Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-517073

ABSTRACT

Humans display vast clinical variability upon SARS-CoV-2 infection1-3, partly due to genetic and immunological factors4. However, the magnitude of population differences in immune responses to SARS-CoV-2 and the mechanisms underlying such variation remain unknown. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells from 222 healthy donors of various ancestries stimulated with SARS-CoV-2 or influenza A virus. We show that SARS-CoV-2 induces a weaker, but more heterogeneous interferon-stimulated gene activity than influenza A virus, and a unique pro-inflammatory signature in myeloid cells. We observe marked population differences in transcriptional responses to viral exposure that reflect environmentally induced cellular heterogeneity, as illustrated by higher rates of cytomegalovirus infection, affecting lymphoid cells, in African-descent individuals. Expression quantitative trait loci and mediation analyses reveal a broad effect of cell proportions on population differences in immune responses, with genetic variants having a narrower but stronger effect on specific loci. Additionally, natural selection has increased immune response differentiation across populations, particularly for variants associated with SARS-CoV-2 responses in East Asians. We document the cellular and molecular mechanisms through which Neanderthal introgression has altered immune functions, such as its impact on the myeloid response in Europeans. Finally, colocalization analyses reveal an overlap between the genetic architecture of immune responses to SARS-CoV-2 and COVID-19 severity. Collectively, these findings suggest that adaptive evolution targeting immunity has also contributed to current disparities in COVID-19 risk.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-432486

ABSTRACT

SARS-CoV-2 infection in children is generally milder than in adults, yet a proportion of cases result in hyperinflammatory conditions often including myocarditis. To better understand these cases, we applied a multi-parametric approach to the study of blood cells of 56 children hospitalized with suspicion of SARS-CoV-2 infection. The most severe forms of MIS-C (multisystem inflammatory syndrome in children related to SARS-CoV-2), that resulted in myocarditis, were characterized by elevated levels of pro-angiogenesis cytokines and several chemokines. Single-cell transcriptomic analyses identified a unique monocyte/dendritic cell gene signature that correlated with the occurrence of severe myocarditis, characterized by sustained NF-{kappa}B activity, TNF- signaling, associated with decreased gene expression of NF-{kappa}B inhibitors. We also found a weak response to type-I and type-II interferons, hyperinflammation and response to oxidative stress related to increased HIF-1 and VEGF signaling. These results provide potential for a better understanding of disease pathophysiology.

SELECTION OF CITATIONS
SEARCH DETAIL
...