Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Imaging ; 4: e3, 2024.
Article in English | MEDLINE | ID: mdl-38516630

ABSTRACT

Single-particle cryogenic electron microscopy (cryo-EM) is an imaging technique capable of recovering the high-resolution three-dimensional (3D) structure of biological macromolecules from many noisy and randomly oriented projection images. One notable approach to 3D reconstruction, known as Kam's method, relies on the moments of the two-dimensional (2D) images. Inspired by Kam's method, we introduce a rotationally invariant metric between two molecular structures, which does not require 3D alignment. Further, we introduce a metric between a stack of projection images and a molecular structure, which is invariant to rotations and reflections and does not require performing 3D reconstruction. Additionally, the latter metric does not assume a uniform distribution of viewing angles. We demonstrate the uses of the new metrics on synthetic and experimental datasets, highlighting their ability to measure structural similarity.

2.
Article in English | MEDLINE | ID: mdl-37645688

ABSTRACT

Principal component analysis (PCA) plays an important role in the analysis of cryo-electron microscopy (cryo-EM) images for various tasks such as classification, denoising, compression, and ab initio modeling. We introduce a fast method for estimating a compressed representation of the 2-D covariance matrix of noisy cryo-EM projection images affected by radial point spread functions that enables fast PCA computation. Our method is based on a new algorithm for expanding images in the Fourier-Bessel basis (the harmonics on the disk), which provides a convenient way to handle the effect of the contrast transfer functions. For N images of size L × L, our method has time complexity O(NL3 + L4) and space complexity O(NL2 + L3). In contrast to previous work, these complexities are independent of the number of different contrast transfer functions of the images. We demonstrate our approach on synthetic and experimental data and show acceleration by factors of up to two orders of magnitude.

3.
Proc Natl Acad Sci U S A ; 120(18): e2216507120, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37094135

ABSTRACT

The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography.

4.
Phys Rev Lett ; 120(16): 164503, 2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29756929

ABSTRACT

Recent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.

5.
Front Immunol ; 5: 80, 2014.
Article in English | MEDLINE | ID: mdl-24639676

ABSTRACT

Natural killer (NK) cells serve as one of the first lines of defense against viral infections and transformed cells. NK cell cytotoxicity is not dependent on antigen presentation by target cells, but is dependent on integration of activating and inhibitory signals triggered by receptor-ligand interactions formed at a tight intercellular contact between the NK and target cell, i.e., the immune synapse. We have studied the single-cell migration behavior and target-cell contact dynamics of resting and interleukin (IL)-2-activated human peripheral blood NK cells. Small populations of NK cells and target cells were confined in microwells and imaged by fluorescence microscopy for >8 h. Only the IL-2-activated population of NK cells showed efficient cytotoxicity against the human embryonic kidney 293T target cells. We found that although the average migration speeds were comparable, activated NK cells showed significantly more dynamic migration behavior, with more frequent transitions between periods of low and high motility. Resting NK cells formed fewer and weaker contacts with target cells, which manifested as shorter conjugation times and in many cases a complete lack of post-conjugation attachment to target cells. Activated NK cells were approximately twice as big as the resting cells, displayed a more migratory phenotype, and were more likely to employ "motile scanning" of the target-cell surface during conjugation. Taken together, our experiments quantify, at the single-cell level, how activation by IL-2 leads to altered NK cell cytotoxicity, migration behavior, and contact dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...