Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biomed Eng ; 5(8): 805-814, 2021 08.
Article in English | MEDLINE | ID: mdl-33782573

ABSTRACT

Because post-mortem human skeletal muscle is not viable, autologous muscle grafts are typically required in tissue reconstruction after muscle loss due to disease or injury. However, the use of autologous tissue often leads to donor-site morbidity. Here, we show that intraspecies and interspecies chimaeric pig embryos lacking native skeletal muscle can be produced by deleting the MYF5, MYOD and MYF6 genes in the embryos via CRISPR, followed by somatic-cell nuclear transfer and the delivery of exogenous cells (porcine blastomeres or human induced pluripotent stem cells) via blastocyst complementation. The generated intraspecies chimaeras were viable and displayed normal histology, morphology and function. Human:pig chimaeras generated with TP53-null human induced pluripotent stem cells led to higher chimaerism efficiency, with embryos collected at embryonic days 20 and 27 containing humanized muscle, as confirmed by immunohistochemical and molecular analyses. Human:pig chimaeras may facilitate the production of exogenic organs for research and xenotransplantation.


Subject(s)
Animals, Genetically Modified/metabolism , Muscle, Skeletal/metabolism , MyoD Protein/genetics , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factors/genetics , Animals , Blastomeres/cytology , Blastomeres/metabolism , Cell Lineage , Cellular Reprogramming , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Embryo, Mammalian/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Editing , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , MyoD Protein/metabolism , Myogenic Regulatory Factor 5/deficiency , Myogenic Regulatory Factors/metabolism , Swine , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics
2.
Nat Biotechnol ; 38(3): 297-302, 2020 03.
Article in English | MEDLINE | ID: mdl-32094659

ABSTRACT

The scarcity of donor organs may be addressed in the future by using pigs to grow humanized organs with lower potential for immunological rejection after transplantation in humans. Previous studies have demonstrated that interspecies complementation of rodent blastocysts lacking a developmental regulatory gene can generate xenogeneic pancreas and kidney1,2. However, such organs contain host endothelium, a source of immune rejection. We used gene editing and somatic cell nuclear transfer to engineer porcine embryos deficient in ETV2, a master regulator of hematoendothelial lineages3-7. ETV2-null pig embryos lacked hematoendothelial lineages and were embryonic lethal. Blastocyst complementation with wild-type porcine blastomeres generated viable chimeric embryos whose hematoendothelial cells were entirely donor-derived. ETV2-null blastocysts were injected with human induced pluripotent stem cells (hiPSCs) or hiPSCs overexpressing the antiapoptotic factor BCL2, transferred to synchronized gilts and analyzed between embryonic day 17 and embryonic day 18. In these embryos, all endothelial cells were of human origin.


Subject(s)
Blastomeres/cytology , Embryo, Mammalian/metabolism , Endothelium/metabolism , Induced Pluripotent Stem Cells/transplantation , Transcription Factors/deficiency , Animals , Blastomeres/metabolism , Cells, Cultured , Embryonic Development , Endothelium/cytology , Gene Editing , Humans , Induced Pluripotent Stem Cells/metabolism , Nuclear Transfer Techniques , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Swine
3.
Dev Neurosci ; 38(4): 264-276, 2016.
Article in English | MEDLINE | ID: mdl-27669335

ABSTRACT

Iron deficiency (ID), with and without anemia, affects an estimated 2 billion people worldwide. ID is particularly deleterious during early-life brain development, leading to long-term neurological impairments including deficits in hippocampus-mediated learning and memory. Neonatal rats with fetal/neonatal ID anemia (IDA) have shorter hippocampal CA1 apical dendrites with disorganized branching. ID-induced dendritic structural abnormalities persist into adulthood despite normalization of the iron status. However, the specific developmental effects of neuronal iron loss on hippocampal neuron dendrite growth and branching are unknown. Embryonic hippocampal neuron cultures were chronically treated with deferoxamine (DFO, an iron chelator) beginning at 3 days in vitro (DIV). Levels of mRNA for Tfr1 and Slc11a2, iron-responsive genes involved in iron uptake, were significantly elevated in DFO-treated cultures at 11DIV and 18DIV, indicating a degree of neuronal ID similar to that seen in rodent ID models. DFO treatment decreased mRNA levels for genes indexing dendritic and synaptic development (i.e. BdnfVI,Camk2a,Vamp1,Psd95,Cfl1, Pfn1,Pfn2, and Gda) and mitochondrial function (i.e. Ucp2,Pink1, and Cox6a1). At 18DIV, DFO reduced key aspects of energy metabolism including basal respiration, maximal respiration, spare respiratory capacity, ATP production, and glycolytic rate, capacity, and reserve. Sholl analysis revealed a significant decrease in distal dendritic complexity in DFO-treated neurons at both 11DIV and 18DIV. At 11DIV, the length of primary dendrites and the number and length of branches in DFO-treated neurons were reduced. By 18DIV, partial recovery of the dendritic branch number in DFO-treated neurons was counteracted by a significant reduction in the number and length of primary dendrites and the length of branches. Our findings suggest that early neuronal iron loss, at least partially driven through altered mitochondrial function and neuronal energy metabolism, is responsible for the effects of fetal/neonatal ID and IDA on hippocampal neuron dendritic and synaptic maturation. Impairments in these neurodevelopmental processes likely underlie the negative impact of early life ID and IDA on hippocampus-mediated learning and memory.


Subject(s)
Dendrites/metabolism , Energy Metabolism/physiology , Gene Expression/physiology , Hippocampus/growth & development , Hippocampus/metabolism , Iron Deficiencies , Anemia, Iron-Deficiency/metabolism , Animals , Animals, Newborn , Learning/drug effects , Memory/drug effects , Mice , Neurogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...