Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurol Res ; : 1-10, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007696

ABSTRACT

OBJECTIVES: For nerve injuries, not amendable to tensionless epineural coaptation of the nerve, autografts are the preferred treatment. Although absorbable sutures are not recommended for nerve repair, there is no evidence that non-absorbable sutures are superior to absorbable sutures. This study aims to assess the effectiveness of non-absorbable monofilament nylon sutures, absorbable monofilament vicryl sutures, and fibrin glue when used for nerve grafting. METHODS: Lewis rats (N = 32) were subjected to a sciatic nerve transection and randomly assigned to a group: graft with Nylon, graft with Vicryl, graft with Fibrin Glue, or no graft. Motor function, sensory function, and thermal pain were assessed during a 12-week recovery period, and immunohistochemistry was used to assess macrophage response. RESULTS: At 12 weeks, the Vicryl and Nylon groups had significantly larger ankle angles at to lift off, which is a measure of motor function, compared to injured controls (p < 0.05). Grafted rats displayed no difference in thermal response but hypersensitivity to mechanical stimuli compared to the uninjured hindlimb. The Nylon, Vicryl, and Fibrin Glue groups all had significantly less atrophy of the gastrocnemius muscle compared to injured controls (p < 0.0001). In the Fibrin Glue group, 3/9 grafts did not incorporate. The Nylon group had significantly less (p = 0.0004) axon growth surrounding the suture holes compared to the Vicryl group. There were no differences in the axon counts, motor neurons, or sensory neurons between all grafted rats. CONCLUSIONS: These results demonstrate that vicryl sutures work just as well as nylon for nerve recovery after injury and grafting.

2.
Angew Chem Int Ed Engl ; : e202402078, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753586

ABSTRACT

Globally, traumatic injury is a leading cause of suffering and death. The ability to curtail damage and ensure survival after major injury requires a time-sensitive response balancing organ perfusion, blood loss, and portability, underscoring the need for novel therapies for the prehospital environment. Currently, there are few options available for damage control resuscitation (DCR) of trauma victims. We hypothesize that synthetic polymers, which are tunable, portable, and stable under austere conditions, can be developed as effective injectable therapies for trauma medicine. In this work, we design injectable polymers for use as low volume resuscitants (LVRs). Using RAFT polymerization, we evaluate the effect of polymer size, architecture, and chemical composition upon both blood coagulation and resuscitation in a rat hemorrhagic shock model. Our therapy is evaluated against a clinically used colloid resuscitant, Hextend. We demonstrate that a radiant star poly(glycerol monomethacrylate) polymer did not interfere with coagulation while successfully correcting metabolic deficit and resuscitating animals from hemorrhagic shock to the desired mean arterial pressure range for DCR - correcting a 60 % total blood volume (TBV) loss when given at only 10 % TBV. This highly portable and non-coagulopathic resuscitant has profound potential for application in trauma medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...