Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Med Sci Sports Exerc ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38857520

ABSTRACT

PURPOSE: To monitor changes in mood, cognitive function, brain electrical activity, and circulating kynurenine pathway metabolites in response to a three-week severe physical activity restriction, followed by three weeks of resumed activity adding resistance and high-intensity interval exercise training. METHODS: Twenty healthy participants (14 males, six females; 25.4 ± 5.2 years) underwent three weeks of limited physical activity using forearm crutches with one leg suspended (INACT) and then three weeks of resumed activity plus supervised resistance and high-intensity interval training sessions (ACT, three to six sessions per week). At baseline, after INACT, and then after ACT, venous blood was sampled for analysis of major kynurenine pathway metabolites, a short version of the International Physical Activity Questionnaire (IPAQ-SF), Hospital Anxiety and Depression Scale (HADS) and Profile of Mood States (POMS) questionnaires were completed, and cognitive tests with EEG were performed. RESULTS: During INACT, the depression score on the HADS scale tended to increase (3.5 to 6.8; p = 0.065), while it was reduced with ACT compared with after INACT (2.8; p = 0.022). On the POMS scale, depression, fatigue, and confusion increased within INACT (p < 0.05). Notably, subjects exhibited considerable variability, and those experiencing depression symptoms recorded by the HADS scale (n = 4) displayed distinct mood disturbances on POMS. All HADS and POMS scores were fully restored to baseline with ACT. Neither INACT nor ACT induced significant changes in cognition, brain electrical activity, or kynurenine pathway metabolites (p > 0.05). CONCLUSIONS: While young healthy individuals with three weeks of severely restricted physical activity do not undergo changes in circulating kynurenine pathway metabolites, cognitive performance, and brain electrical activity, their mood response is quite variable, and depression develops in some. Three weeks of resuming mobility plus exercise training reversed the mood profile.

2.
J Strength Cond Res ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838240

ABSTRACT

ABSTRACT: Kamandulis, S, Dudeniene, L, Snieckus, A, Kniubaite, A, Mickevicius, M, Lukonaitiene, I, Venckunas, T, Stasiule, L, and Stasiulis, A. Impact of anaerobic exercise integrated into regular training on experienced judo athletes: running vs. repetitive throws. J Strength Cond Res XX(X): 000-000, 2024-Anaerobic training in high-level athletes is of considerable interest to practitioners aiming to optimize performance. This study compared the impact of interval anaerobic training (IAT) sessions consisting of either high-intensity running or throwing that were performed twice a week together with regular judo training on the anaerobic and aerobic performance of experienced judo athletes. Employing a repeated-measures, counterbalancing, research design, 12 national team judo athletes (7 women and 5 men; mean age, 20.4 ± 0.95 years; mean judo training experience, 13.4 ± 1.4 years; competitive level, black belt first and second Dan) performed each IAT modality for 6 weeks, for a full training cycle of 12 weeks. Assessments of their anaerobic fitness (Cunningham and Faulkner Anaerobic Treadmill Test), sport-specific anaerobic fitness (Special Judo Fitness Test [SJFT]), and aerobic capacity (maximal incremental treadmill running test) were performed before, after 6 weeks, and after 12 weeks of training. The uphill running performance improved by 13.1% over the 12-week period (p = 0.047). Simultaneously, there was a 9.0% improvement in the SJFT index and a 6.9% increase in the number of throws (p = 0.011 and p = 0.017, respectively). Although a trend for throwing drills being more effective than interval sprint running was observed, the interaction effect lacked statistical significance (p = 0.074). Moreover, no substantial changes were noted in aerobic endurance markers. In conclusion, this study suggests that incorporating specific and nonspecific high-intensity drills into a routine training regimen may enhance anaerobic capacity among well-trained judo athletes, potentially leading to favorable competitive outcomes.

3.
Appl Physiol Nutr Metab ; 49(2): 190-198, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37820386

ABSTRACT

Monitoring the muscle mechanical properties and functions of female athletes throughout their training season is relevant to understand the relationships between these factors and to predict noncontact injuries, which are prevalent among female athletes. The first aim of this study was to determine whether female handball players' passive stiffness of the hamstring muscles is associated with hamstring extensibility, strength of knee flexors and extensors, and lower limb stiffness. Additionally, the study monitored fluctuations in these factors over 25 weeks. The study utilized an isokinetic dynamometer to record hamstring passive stiffness, extensibility, and hamstring and quadriceps strength of 18 young handball players. Lower limb stiffness was determined from a countermovement vertical jump conducted on a force plate. The countermovement jump involved the calculation of the peak force during the eccentric phase and the mean force during the concentric phase. The results showed a positive correlation between hamstring passive stiffness and lower limb stiffness (r = 0.660, p < 0.01), knee flexion and extension strength (r = 0.592, p < 0.01 and r = 0.497, p < 0.05, respectively), and eccentric peak force (r = 0.587, p < 0.01) during jumping. The strength of knee extensors increased significantly after 6 weeks, and hamstring stiffness after 12 weeks of training. In conclusion, the increased hamstring stiffness following training did not match other factors associated with injury risk. Therefore, preventing multifactorial injury risk requires a comprehensive approach, and monitoring one factor alone is insufficient to predict noncontact injuries in female handball players.


Subject(s)
Hamstring Muscles , Sports , Humans , Female , Hamstring Muscles/physiology , Seasons , Muscle Strength/physiology , Risk Factors
4.
Front Physiol ; 14: 1219087, 2023.
Article in English | MEDLINE | ID: mdl-37670769

ABSTRACT

Background: Explosive and fast body movements, sprints, jumps and quick changes of direction, which are characteristic of the football training, place considerable strain on the hamstring muscles. Due to the high occurrence of hamstring injuries, new preventive strategies are required that focus on high-velocity training. The purpose was to assess the effectiveness of high-velocity elastic-band training in reducing the occurrence of hamstring injuries in football players. Methods: Male football players from 15 teams (n = 319) playing in national competitions participated in this study. The players were involved in a 5-week exercise period in either the intervention group (INT) or the control group (CON), with a follow-up period of ∼4 months where hamstring injuries and exposure time were recorded. The INT group had two to three sessions per week of elastic-band training with low-load, high-velocity leg curls while lying prone; the CON group performed self-paced football-specific drills. Results: The incidence rate of hamstring injuries was 6.5% in the INT group (8 out of 123 players) and 9.2% in the CON group (18 out of 196 players). Although the INT group showed almost 1/3 reduction in hamstring injury incidence compared to the CON group, the difference was not statistically significant (p > 0.05). Moreover, no differences (p > 0.05, odds ratio [OR] = trivial-to-small) in distribution between the groups were found in hamstring injury characteristics (leg dominance and mechanism) except for the distribution of injuries that occurred during matches or training (p = 0.036; OR = 6.14, moderate). Conclusion: The program of high-velocity elastic-band training did not prove to be effective in preventing hamstring muscle injuries in football players despite displaying some positive indications that could be considering when creating injury prevention programs.

5.
Children (Basel) ; 10(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37371295

ABSTRACT

Mechanical scooter riding is a popular physical activity among children, but little is known about the differences in muscle loading between the dominant and non-dominant sides during this activity. The objective of this study was to identify the muscle activation patterns in children's dominant and non-dominant legs as they rode scooters on the convenient and inconvenient sides. The study included nine healthy children aged 6-8. The participants rode 20 m on a mechanical scooter at a self-selected pace using both the convenient and inconvenient sides. Electromyography was used to measure the muscle activity in the dominant and non-dominant legs during the pushing and gliding phases. A 20 m sprint run was used as a control exercise to estimate the typical differences in muscle activation between the dominant and non-dominant legs. In the pushing phase, the symmetry index for five of the eight analyzed muscles exceeded 50% (p < 0.05); four of these muscles were more active in the pushing leg, and one was more active in the standing leg. In the gliding phase, four muscles were more active in the standing leg, and one was more active in the pushing leg (p < 0.05). Upon observing children who changed sides while riding a scooter, it was found that the pattern of muscle activation displayed a reverse trend that resembled the initial pattern. Our study indicated notable differences in muscle activity patterns between the dominant and non-dominant sides of individual leg muscles during children's scooter riding. These patterns were reversed when children switched sides on the scooter. These findings suggest that using both legs and switching sides while riding a scooter may be a viable strategy for promoting balanced muscular development.

6.
Eur J Appl Physiol ; 122(1): 255-266, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34674024

ABSTRACT

PURPOSE: Unaccustomed eccentric contractions generally result in a long-lasting contractile impairment, referred to as prolonged low-frequency force depression (PLFFD), and delayed-onset muscle soreness (DOMS). We here used repeated drop jumps (DJs) as an eccentric contraction model and studied the effects of increasing the time between DJs from 20 s to 5 min. We hypothesized that both PLFFD and DOMS would be less marked at the longer DJ interval due to the longer time to restore structural elements between DJs. METHODS: Young men (n = 12) randomly performed 50 DJs with either 20-s (DJ-20 s) or 5-min (DJ-5 min) rest between DJs. Voluntary, 20 Hz and 100 Hz electrically stimulated isometric knee extension torques and muscle soreness were monitored before and for 7 days after DJs; serum CK activity was measured to assess muscle fibre protein leakage. In additional experiments, changes in mRNA levels were assessed in muscle biopsies collected before and 1 h after exercise. RESULTS: A marked PLFFD was observed with both protocols and the extent of 20 Hz torque depression was smaller immediately and 1 day after DJ-5 min than after DJ-20 s (p < 0.05), whereas the MVC and 100 Hz torques were similarly decreased with the two protocols. Markedly larger differences between the two protocols were observed for the muscle soreness score, which 1-4 days after exercise was about two times larger with DJ-20 s than with DJ-5 min (p < 0.01). CONCLUSIONS: The larger protective effect of the longer DJ interval against DOMS than against PLFFD indicates that their underlying mechanisms involve different structural elements.


Subject(s)
Knee/physiology , Muscle Contraction/physiology , Myalgia/prevention & control , Rest , Adult , Biomarkers/blood , Biopsy, Needle , Creatine Kinase/blood , Electric Stimulation , Humans , Male , Pain Measurement , Time Factors , Torque , Young Adult
7.
Antioxidants (Basel) ; 12(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36670879

ABSTRACT

Inactivity is known to induce muscle weakness, and chronically increased levels of reactive oxygen species (ROS) are proposed to have a central causative role in this process. Intriguingly, high-intensity interval training (HIIT), which involves bursts of high ROS production, can have positive effects in pathological conditions with chronically increased ROS. Here, young male volunteers were exposed to 3 weeks of unloading of the dominant leg followed by 3 weeks of resistance training without (Ctrl group) or with the addition of all-out cycling HIIT. Changes in muscle thickness were assessed by ultrasonography, and contractile function was studied by measuring the torque during maximal voluntary contractions (MVC). The results show an ~6% decrease in vastus lateralis thickness after the unloading period, which was fully restored after the subsequent training period in both the Ctrl and HIIT groups. MVC torque was decreased by ~11% after the unloading period and recovered fully during the subsequent training period in both groups. All-out cycling performance was improved by the 3 weeks of HIIT. In conclusion, the decline in muscle size and function after 3 weeks of unloading was restored by 3 weeks of resistance training regardless of whether it was combined with HIIT.

8.
Article in English | MEDLINE | ID: mdl-33922796

ABSTRACT

The purposes of this study were to investigate the muscle-tendon unit stiffness response and to compare the stiffness with those of other indirect markers induced by two bouts of unaccustomed eccentric exercise. Eleven untrained men performed two bouts of 200 maximal eccentric contractions of the right quadriceps 4 weeks apart. Changes in stiffness, pain evoked by stretching and pressure, plasma creatine kinase (CK) activity, and muscle thickness were followed for 7 days after each bout. Stiffness and pain peaked immediately and 1 day after the first exercise bout, whereas CK and thickness were highest 4 and 7 days after the first exercise bout, respectively (p < 0.05 for all). Muscular pain, thickness, and stiffness responses were lower by 53.3%, 99%, and 11.6%, respectively, after the repeated bout compared to after the first bout (p < 0.05 for all), while CK activity response did not differ significantly between bouts. High responders for an increase in muscle-tendon unit stiffness showed a repeated-bout effect for stiffness, pain, and CK activity (by 29%, 65%, and 98%, p < 0.05 for all), but the repeated-bout effect was not that clear in low responders. These findings suggest that a repeated eccentric exercise bout effect on stiffness in quadriceps is mostly not associated with muscle pain and CK activity, but there are large individual differences.


Subject(s)
Exercise , Muscle, Skeletal , Humans , Male , Myalgia , Quadriceps Muscle , Tendons
9.
J Musculoskelet Neuronal Interact ; 20(4): 488-497, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33265076

ABSTRACT

OBJECTIVE: the purpose of this study was to identify differences in hamstring passive stiffness between the pre-season and in-season periods. METHODS: Hamstring strength and passive stiffness were measured in professional male soccer players before and after the pre-season (4 weeks), and after the in-season (6 weeks) periods using an isokinetic dynamometer. Muscle passive stiffness was determined from the slope of the passive torque-angle relationship. External loads (acceleration and jumps) were monitored by GPS and internal loads by questionnaire. RESULTS: Hamstring passive stiffness increased after 10 weeks of training and matches, without changes in passive peak torque and range of motion. The hamstring passive stiffness modifications were associated with the volume and intensity of accelerations and jumps. The individual data analysis also provided some support for the suppression of the biomechanical adaptation in the subjects with relatively large external load. CONCLUSIONS: Regular training and match workouts increase hamstring passive stiffness in professional soccer players but the adaptation of muscle-tendon unit passive elements might not occur if players experience excessive mechanical stress.


Subject(s)
Exercise/physiology , Hamstring Muscles/physiology , Muscle Strength/physiology , Muscle Tonus/physiology , Soccer/physiology , Adaptation, Physiological/physiology , Adult , Athletes , Humans , Male
10.
Eur J Appl Physiol ; 120(9): 2127-2135, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32728819

ABSTRACT

PURPOSE: We investigated the immediate effects of neurodynamic nerve gliding (ND) on hamstring flexibility, viscoelasticity, and mechanosensitivity, compared with traditional static stretching (ST). METHODS: Twenty-two physically active men aged 21.9 ± 1.9 years were divided randomly into two equal intervention groups using ST or ND. An isokinetic dynamometer was used to measure the active knee joint position sense, perform passive knee extension, record the passive extension range of motion (ROM) and the passive-resistive torque of hamstrings. Stiffness was determined from the slope of the passive torque-angle relationship. A stress relaxation test (SRT) was performed to analyze the viscoelastic behavior of the hamstrings. The passive straight leg raise (SLR) test was used to evaluate hamstring flexibility. RESULTS: A significant interaction was observed for ROM and passive ultimate stiffness, reflected by an increase in these indicators after ND but not after SD. SLR increased significantly in both groups. After ST, a significantly faster initial stress relaxation was observed over the first 4 s. than after ND. There was no significant change in the active knee joint position sense. CONCLUSIONS: ND provided a slightly greater increase in hamstring extensibility and passive stiffness, possibly by decreasing nerve tension and increasing strain in connective tissues than ST. The ST mostly affected the viscoelastic behavior of the hamstrings, but neither intervention had a significant impact on proprioception.


Subject(s)
Hamstring Muscles/physiology , Knee Joint/physiology , Adult , Electromyography/methods , Humans , Leg/physiology , Proprioception/physiology , Range of Motion, Articular/physiology , Torque , Young Adult
11.
Article in English | MEDLINE | ID: mdl-32235693

ABSTRACT

Adolescent athletes are particularly vulnerable to stress. The current study aimed to monitor one of the most popular and accessible stress markers, heart rate variability (HRV), and its associations with training load and sleep duration in young swimmers during an 11-week training period to evaluate its relevance as a tool for monitoring overtraining. National-level swimmers (n = 22, age 14.3 ± 1.0 years) of sprint and middle distance events followed individually structured training programs prescribed by their swimming coach with the main intention of preparing for the national championships. HRV after awakening, during sleep and training were recorded daily. There was a consistent ~4.5% reduction in HRV after 3-5 consecutive days of high (>6 km/day) swimming volume, and an inverse relationship of HRV with large (>7.0 km/day) shifts in total training load (r = -0.35, p < 0.05). Day-to-day HRV did not significantly correlate with training volume or sleep duration. Taken together, these findings suggest that the value of HRV fluctuations in estimating the balance between the magnitude of a young athlete's physical load and their tolerance is limited on a day-to-day basis, while under sharply increased or extended training load the lower HRV becomes an important indicator of potential overtraining.


Subject(s)
Athletes , Heart Rate/physiology , Monitoring, Physiologic/methods , Swimming , Adolescent , Female , Humans , Male , Sleep
12.
Exp Physiol ; 105(3): 502-510, 2020 03.
Article in English | MEDLINE | ID: mdl-31908058

ABSTRACT

NEW FINDING: What is the central question of this study? Does low frequency muscle fatigue indicate a failure of excitation-contraction coupling after eccentric exercise, or is it simply due to a change in muscle length? What is the main finding and its importance? The low to high frequency muscle fatigue ratio was relatively insensitive to changes in muscle length, and any changes in length following eccentric exercise were far too small to account for the high degree of low frequency fatigue. The results strengthen the suggestion that the early loss of force following eccentric exercise is due to a deficit of excitation-contraction coupling. ABSTRACT: Development of long lasting fatigue (low frequency fatigue; LFF), assessed as the ratio of forces at 20 and 100 Hz stimulation, suggests the early phase of muscle damage caused by eccentric exercise is due to a deficit of excitation-contraction coupling. However, this could be caused by a change of muscle length. Eleven men (21.3 ± 2.0 years) performed 200 maximum eccentric knee extensions (30-110 deg flexion). Force generated by 20 and 100 Hz stimulation and maximum isometric force (MIF) were determined at knee angles 50, 70 and 90 deg before and immediately after the exercise. Vastus lateralis fascicle length (FL) was measured by ultrasound of resting and contracting muscle. Peak MIF (829 ± 119 N) was at 70 deg knee flexion, falling to 486 ± 180 N (P < 0.001) after exercise, but with no change in optimum angle. FLs at rest were unaffected by eccentric exercise, but during contraction they were on average 8.8% (95% CI: 4.1, 13.5%, P = 0.002) longer after exercise. Before exercise, the 20/100 ratio increased with muscle length, from 0.69 ± 0.09 at 50 deg, 0.72 ± 0.05 at 70 deg and 0.80 ± 0.08 at knee angle 90 deg (P < 0.001). After eccentric exercise the 20/100 ratio was reduced to 0.29 ± 0.08 at 50 deg, 0.27 ± 0.04 at 70 deg and 0.34 ± 0.04 at 90 deg (P < 0.001). The 20/100 ratio was relatively insensitive to changes in muscle length and the decrease following eccentric exercise was far greater than might be caused by any changes in muscle length after eccentric exercise. The results show that LFF following eccentric exercise is not due to change in muscle length and strengthen the suggestion that it represents a deficit in excitation-contraction coupling.


Subject(s)
Exercise/physiology , Knee Joint/physiology , Knee/physiology , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Adult , Electromyography/methods , Humans , Male , Quadriceps Muscle/physiology , Range of Motion, Articular/physiology , Torque , Young Adult
13.
J Musculoskelet Neuronal Interact ; 19(2): 207-214, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31186391

ABSTRACT

OBJECTIVES: To determine the role of primary and secondary damage in the variation between people of maximum voluntary contraction (MVC) torque recovery following eccentric exercise and the faster recovery following a repeated bout of exercise. METHODS: Twenty-one healthy, active but untrained young female subjects undertook eccentric exercise of the elbow flexors and 11 repeated the exercise 28 days later. Changes of MVC torque and creatine kinase (CK) were followed for 7 days after each bout of exercise. RESULTS: Following the first bout, 45% of subjects showed a continuing decline in MVC torque, suggesting secondary damage, which was correlated with a large delayed CK release (R2=0.54, p<0.001). After the second bout of exercise, the initial MVC torque loss was similar to that after the first bout while torque recovery was faster, but only for the previously slow recovering subjects. Comparing the time course of MVC torque recovery of first and second bouts suggests secondary damage develops over 4 days. CONCLUSIONS: The data are consistent with primary damage being similar between subjects and unaffected by the repeated bout while it is secondary damage which accounts for differences in MVC torque recovery and is suppressed following a repeated bout of exercise.


Subject(s)
Elbow Joint/physiology , Exercise/physiology , Isometric Contraction/physiology , Muscle, Skeletal/physiology , Recovery of Function/physiology , Torque , Adult , Electromyography/methods , Female , Humans , Muscle Contraction/physiology , Young Adult
14.
Eur J Appl Physiol ; 119(5): 1183-1194, 2019 May.
Article in English | MEDLINE | ID: mdl-30805713

ABSTRACT

PURPOSE: To determine how muscle stiffness and pain which develop after eccentric exercise are affected by gentle stretching and repeated exercise. METHODS: Twenty-one healthy female participants undertook eccentric exercise of the elbow flexors and changes in resting elbow flexion angle (REFA; a measure of muscle stiffness), pain on stretch scale, pain elicited by pressure (PPT pain, a measure of mechanoreceptor hypersensitivity), and upper arm girth were followed for 7 days after exercise. The effects of gentle passive stretching on pain and muscle stiffness were investigated 2 and 4 days after exercise. Eleven participants also repeated the exercise with the same arm 6 weeks after the first bout. RESULTS: There was a significant relationship between the pain on stretch scale and increased REFA (day 4; R2 = 0.65, p < 0.001), whereas there was no relationship between REFA and PPT pain. REFA was reduced by passive stretching and pain on stretch scale was also reduced from 3.0 (1.4, 5.1) to 0.75 (0.0, 2.0) [median (IQR), p = 0.01]. PPT pain was unaffected by the passive stretching, as was muscle swelling. Following the repeated bout, increases in REFA were much reduced, as was pain on stretch scale (p = 0.02). However, PPT pain was not significantly different between the two bouts of exercise. CONCLUSIONS: The results indicate that reductions in pain on stretch scale, either by gentle passive stretching or as the result of repeated exercise, are primarily due to reductions in muscle stiffness which develops after eccentric exercise, whereas mechanoreceptor hypersensitivity is relatively unaffected.


Subject(s)
Myalgia/therapy , Plyometric Exercise/methods , Adult , Female , Humans , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology
15.
Eur J Appl Physiol ; 119(4): 1029-1039, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30734104

ABSTRACT

PURPOSE: The aim of this study was to follow post-activation potentiation (PAP), low-frequency fatigue (LFF), metabolic-induced fatigue and post-contractile depression (PCD) in response to different isometric muscle contraction modalities. METHODS: Young healthy men (N = 120) were randomly assigned to one of ten exercise modality groups which differed in contraction duration (5-60 s), activation pattern (intermittent or continuous contractions), activation mode (voluntary or stimulated), and intensity [maximal or submaximal (50%)]. Isometric maximal voluntary contraction (MVC), and electrically induced knee extension torque were measured at baseline and at regular intervals for 60 min after exercise. RESULTS: Muscle contraction modalities involving 5 s MVC were the most effective for PAP, whereas the lowest PAP effectiveness was found after the 12 × 5-MVC modality. After all of the 5-15 s MVC and 6 × 5-MVC protocols, the potentiation of the twitch rate was significantly higher than that recorded after continuous 30-60 s protocols (P < 0.001). Tetanic maximal torque (100 Hz) potentiation occurred 5 min after 15-30 s repetitive MVC modalities and after modality involving 15 electrical stimuli (P < 0.05). CONCLUSIONS: The findings demonstrate that post-activation potentiation was most effective after brief duration continuous and repetitive MVC protocols. To understand the resultant warm-up of motor performance, it is necessary to recognize the coexistence of muscle PAP, tetanic maximal force potentiation, rapid recovery of metabolic muscle, and central muscle activation processes, as well as prolonged LFF and prolonged PCD.


Subject(s)
Exercise/physiology , Isometric Contraction/physiology , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Adolescent , Adult , Electric Stimulation/methods , Fatigue/physiopathology , Humans , Male , Young Adult
16.
Phys Ther Sport ; 32: 273-281, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29793833

ABSTRACT

OBJECTIVES: To compare knee torque, range of motion, quality of movement, and morphology in dominant and nondominant legs of male adolescent basketball players with and without anterior knee pain and untrained peers. DESIGN: Cross-sectional. SETTING: Sports performance laboratory. PARTICIPANTS: Male basketball players aged 14-15 years with and without anterior knee pain and healthy untrained subjects (n = 88). MAIN OUTCOME MEASURES: Basketball players were allocated to a symptomatic or asymptomatic group based on self-reported anterior knee pain. Associations between pain and body mass, height, passive range of motion, muscle peak torque, coactivation, neuromuscular control, proprioception, and ultrasound observations were investigated. RESULTS: The prevalence of pain did not differ significantly between sides. Of 176 knees inspected, 44 were painful, and 26 of these exhibited abnormalities in ultrasonography. Symptomatic players were 5.0 and 6.9 cm taller than asymptomatic players and controls, respectively (P < 0.05). In athletes with knee pain, the odds ratios of morphological abnormalities and greater height were increased by 8.6 and 5.0 times (P < 0.001). CONCLUSION: Knee pain prevalence in adolescent basketball players was not related to differences between sides but was higher in tall players. Knee pain was accompanied by morphological abnormalities detected with ultrasound.


Subject(s)
Body Height , Knee/abnormalities , Knee/physiopathology , Pain/physiopathology , Adolescent , Basketball , Case-Control Studies , Cross-Sectional Studies , Electromyography , Humans , Knee Joint/diagnostic imaging , Knee Joint/physiopathology , Male , Proprioception , Range of Motion, Articular , Torque , Ultrasonography
17.
Eur J Appl Physiol ; 117(8): 1713-1725, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28647867

ABSTRACT

PURPOSE: The purpose of this study was to compare the benefits and possible problems of 4 weeks stretching when taken to the point of pain (POP) and to the point of discomfort (POD). METHODS: Twenty-six physically active women (20 ± 1.1 years) took part in group-based stretching classes of the hamstring muscles, 4 times per week for 4 weeks, one group one stretching to POD, the other to POP. Passive stiffness, joint range of motion (ROM), maximal isometric torque and concentric knee flexion torque, were measured before training and 2 days after the last training session. RESULTS: Hip flexion ROM increased by 14.1° (10.1°-18.1°) and 19.8° (15.1°-24.5°) and sit-and-reach by 7.6 (5.2-10.0) cm and 7.5 (5.0-10.0) cm for POD and POP, respectively (Mean and 95% CI; p < 0.001 within group; NS between groups), with no evidence of damage in either group. Despite the large increases in flexibility there were no changes in either compliance or viscoelastic properties of the muscle tendon unit (MTU). CONCLUSION: Hamstrings stretching to POP increased flexibility and had no detrimental effects on muscle function but the benefits were no better than when stretching to POD so there is no justification for recommending painful stretching. The improvements in flexibility over 4 weeks of stretching training appear to be largely due to changes in the perception of pain rather than physical properties of the MTU although less flexible individuals benefited more from the training and increased hamstring muscle length.


Subject(s)
Hamstring Muscles/physiology , Muscle Stretching Exercises , Range of Motion, Articular/physiology , Female , Humans , Tendons/physiology , Torque , Treatment Outcome , Young Adult
18.
Eur J Appl Physiol ; 117(6): 1217-1226, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28391391

ABSTRACT

PURPOSE: This study evaluated the acute effects of two different stretch intensities on muscle damage and extensibility. METHODS: Twenty-two physically active women (age 20 ± 1.0 years) were divided into two matched groups and undertook eight sets of 30-s passive hamstring stretching. One group stretched to the point of discomfort (POD) and the other to the point of pain (POP). Hamstring passive torque, sit and reach (S&R), straight leg raise (SLR), and markers of muscle damage were measured before, immediately after stretching and 24 h later. RESULTS: S&R acutely increased and was still increased at 24 h with median (interquartile range) of 2.0 cm (0.5-3.75 cm) and 2.0 cm (0.25-3.0 cm) for POP and POD (p < 0.05), respectively, with no difference between groups; similar changes were seen with SLR. Passive stiffness fully recovered by 24 h and there was no torque deficit. A small, but significant increase in muscle tenderness occurred at 24 h in both groups and there was a very small increase in thigh circumference in both groups which persisted at 24 h in POP. Plasma CK activity was not raised at 24 h. CONCLUSION: Stretching to the point of pain had no acute advantages over stretching to the discomfort point. Both forms of stretching resulted in very mild muscle tenderness but with no evidence of muscle damage. The increased ROM was not associated with changes in passive stiffness of the muscle but most likely resulted from increased tolerance of the discomfort.


Subject(s)
Hamstring Muscles/physiology , Muscle Stretching Exercises/adverse effects , Myalgia/physiopathology , Creatine Kinase/blood , Female , Hamstring Muscles/physiopathology , Humans , Muscle Contraction , Myalgia/etiology , Torque , Young Adult
19.
J Sports Med Phys Fitness ; 57(7-8): 1003-1013, 2017.
Article in English | MEDLINE | ID: mdl-28085129

ABSTRACT

BACKGROUND: Knee pain without knee degenerative symptoms is a common phenomenon among young basketball players. The aim of this study was to identify factors predisposing young basketball players to suffer from knee pain. METHODS: The study involved 20 male adolescent (14-15 years) basketball players who were divided into two equal groups based on knee pain symptoms. Legs torque was tested on an isokinetic dynamometer. The length, elongation and the cross-sectional area (CSA) of the patellar tendon were measured with ultrasonography. Quadriceps angle (Q-angle), knee valgus motion, and joint angular displacement in the sagittal plane were analyzed using video recording during countermovement jump. Ground reaction force was measured using a force platform. RESULTS: Knee pain (KP) participants had a significantly lower Q-angle (P=0.045) and lower maximum varus knee angle (P=0.035), and a greater knee inside displacement (P=0.039) during squat phase. In the KP group, the CSA at the top of the tendon was significantly greater than in the middle (P=0.006) and at the bottom (P=0.039). Absolute tendon stiffness (P=0.013) and Young's modulus (P=0.034) were significantly lower in the KP group compared with controls. Leg stiffness during landing was significantly greater in the control group (P=0.015). CONCLUSIONS: Leg stiffness, valgus knee motion, and Q-angle are associated with hypertrophic soft patella tendon and idiopathic knee pain in adolescent basketball players.


Subject(s)
Basketball/physiology , Knee Joint/physiology , Patellar Ligament/physiopathology , Adolescent , Arthralgia/etiology , Biomechanical Phenomena , Case-Control Studies , Cross-Sectional Studies , Exercise , Humans , Knee Joint/diagnostic imaging , Male , Quadriceps Muscle/physiology , Ultrasonography
20.
J Sports Sci Med ; 14(4): 825-33, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26664280

ABSTRACT

The aim of this study was to assess changes in indirect markers of muscle damage and type I collagen degradation, as well as, patellar and Achilles tendon morphological differences during nine daily drop-jumps sessions with constant load alternated with rapid increases in load to test the hypothesis that frequent drop-jump training results in negative muscular and tendon adaptation. Young men (n = 9) performed daily drop jump workouts with progression every 3 days in terms of number of jumps, platform height and squat amplitude. Voluntary and electrically evoked knee extensor torque, muscle soreness, blood plasma creatine kinase (CK) activity and carboxyterminal cross-linked telopeptide (ICTP), patellar and Achilles tendon thickness and cross-sectional area (CSA) were assessed at different time points during the training period and again on days 1, 3, 10 and 17 after the training. The findings were as follows: (1) steady decline in maximal muscle strength with major recovery within 24 hours after the first six daily training sessions; (2) larger decline in electrically induced muscle torque and prolonged recovery during last three training sessions; (3) increase in patellar and Achilles tendons CSA without change in thickness towards the end of training period; (4) increase in jump height but not in muscle strength after whole training period. Our findings suggest that frequent drop-jump sessions with constant load alternated with rapid increases in load do not induce severe muscle damage or major changes in tendons, nonetheless, this type of loading is not advisable for muscle strength improvement. Key pointsFrequent drop jump training induces activation mode dependent muscle torque depression late in the training period.No significant changes in the thickness of patellar and Achilles tendons are observed during frequent training, while CSA increases towards the end of training period.Longitudinal effect for jump height but not for muscle strength is evident after the whole training period.

SELECTION OF CITATIONS
SEARCH DETAIL
...