Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 131(33): 11919-29, 2009 Aug 26.
Article in English | MEDLINE | ID: mdl-19645493

ABSTRACT

Photochemical electron donor-acceptor triads having an aminopyrene primary donor (APy) and a p-diaminobenzene secondary donor (DAB) attached to either one or both imide nitrogen atoms of a perylene-3,4:9,10-bis(dicarboximide) (PDI) electron acceptor were prepared to give DAB-APy-PDI and DAB-APy-PDI-APy-DAB. In toluene, both triads are monomeric, but in methylcyclohexane, they self-assemble into ordered helical heptamers and hexamers, respectively, in which the PDI molecules are pi-stacked in a columnar fashion, as evidenced by small- and wide-angle X-ray scattering. Photoexcitation of these supramolecular assemblies results in rapid formation of DAB(+*)-PDI(-*) spin-polarized radical ion pairs having spin-spin dipolar interactions, which show that the average distance between the two radical ions is much larger in the assemblies (31 A) than it is in their monomeric building blocks (23 A). This work demonstrates that electron hopping through the pi-stacked PDI molecules is fast enough to compete effectively with charge recombination (40 ns) in these systems, making these materials of interest as photoactive assemblies for artificial photosynthesis and organic photovoltaics.

2.
J Am Chem Soc ; 131(24): 8372-3, 2009 Jun 24.
Article in English | MEDLINE | ID: mdl-19476357

ABSTRACT

The distance over which two photogenerated charges are separated in electron donor-acceptor systems for artificial photosynthesis depends on the structure of the system, while the lifetime of the charge separation and, ultimately, its ability to carry out useful redox chemistry depend on the electronic coupling between the oxidized donor and reduced acceptor. The radical ions produced by charge separation are frequently delocalized over the pi systems of the final oxidized donor and reduced acceptor, so that there is often significant uncertainty as to the average distance between the separated charges, especially in low dielectric constant media, where the Coulomb attraction of the ions may be significant and the charge distribution of the ions may be distorted, so that the average distance between them may be shorter than that implied by their chemical structures. The charge separation distances between photogenerated radical ions in three donor-acceptor molecules having different donor-acceptor distances were measured directly from their dipolar spin-spin interactions using out-of-phase electron spin echo envelope modulation (OOP-ESEEM). The measured distances in toluene at 85 K compare favorably to the calculated distances between the centroids of the spin distributions of the radical ions within the radical ion pairs. These results show that despite the intrinsically nonpolar nature of medium, the spin (and charge) distributions of the RPs are not significantly distorted by Coulomb attraction over these long distances. This study shows that OOP-ESEEM is well-suited for probing the detailed structural features of charge-separated intermediates that are essential to understanding how to design molecular structures that prolong and control charge separation for artificial photosynthesis.


Subject(s)
Biomimetic Materials/chemistry , Electron Spin Resonance Spectroscopy/methods , Photosynthesis , Photosynthetic Reaction Center Complex Proteins/chemistry , Models, Molecular , Oxidation-Reduction , Photochemical Processes , Rhodobacter sphaeroides/chemistry , Rhodobacter sphaeroides/metabolism
3.
J Phys Chem A ; 112(18): 4194-201, 2008 May 08.
Article in English | MEDLINE | ID: mdl-18386857

ABSTRACT

Time-resolved electron paramagnetic resonance studies show that the primary mechanism of triplet formation following photoexcitation of julolidine-anthracene molecules linked by a single bond and having perpendicular pi systems is a spin-orbit, charge-transfer intersystem crossing mechanism (SOCT-ISC). This mechanism depends on the degree of charge transfer from julolidine to anthracene, the dihedral angle (theta1) between their pi systems, and the magnitude of the electronic coupling between julolidine and anthracene. We compare 4-(9-anthracenyl)-julolidine with the more sterically encumbered 4-(9-anthracenyl)-3,5-dimethyljulolidine and find that fixing theta1 congruent with 90 degrees serves to enhance SOCT-ISC by increasing the change in orbital angular momentum accompanying charge transfer. Given that the requirements for the SOCT-ISC mechanism are quite general, we expect it to occur in a variety of electron donor-acceptor systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...