Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 50(5): 4729-4733, 2023 May.
Article in English | MEDLINE | ID: mdl-36905402

ABSTRACT

BACKGROUND: Microsatellite primers were developed and tested to genotype several populations of Carex curvula s. l. (Cyperaceae), in order to infer the phylogeographic relationships of the populations within species and the boundaries between the two described subspecies: C. curvula subsp. curvula and C. curvula subsp. rosae. METHODS AND RESULTS: Candidate microsatellite loci were isolated based on next-generation sequencing. We tested 18 markers for polymorphism and replicability in seven C. curvula s. l. populations and identified 13 polymorphic loci with dinucleotide repeats. Genotyping results showed the total number of alleles per locus varied from four to 23 (including both infrataxa), and the observed and expected heterozygosity ranged between 0.1 to 0.82 and 0.219 to 0.711, respectively. Furthermore, the NJ tree showed a clear separation between C. curvula subsp. curvula and C. curvula subsp. rosae. CONCLUSION: The development of these highly polymorphic markers proved to be very efficient not only in delineating between the two subspecies, but also in genetic discriminating at population level within each infrataxon. They are promising tools for evolutionary studies in Cariceae section, as well as in providing knowledge on patterns of the species phylogeography.


Subject(s)
Carex Plant , Cyperaceae , Carex Plant/genetics , Cyperaceae/genetics , Polymorphism, Genetic/genetics , Genotype , Microsatellite Repeats/genetics , Genetic Loci
2.
BMC Plant Biol ; 23(1): 4, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36588161

ABSTRACT

BACKGROUND: Crops are under constant pressure due to global warming, which unfolds at a much faster pace than their ability to adapt through evolution. Agronomic traits are linked to cytoplasmic-nuclear genome interactions. It thus becomes important to understand the influence exerted by the organelles on gene expression under heat stress conditions and profit from the available genetic diversity. Maize (Zea mays) cytolines allow us to investigate how the gene expression changes under heat stress conditions in three different cytoplasmic environments, but each having the same nucleus. Analyzing retrograde signaling in such an experimental set-up has never been done before. Here, we quantified the response of three cytolines to heat stress as differentially expressed genes (DEGs), and studied gene expression patterns in the context of existing polymorphism in their organellar genomes. RESULTS: Our study unveils a plethora of new genes and GO terms that are differentially expressed or enriched, respectively, in response to heat stress. We report 19,600 DEGs as responding to heat stress (out of 30,331 analyzed), which significantly enrich 164 GO biological processes, 30 GO molecular functions, and 83 GO cell components. Our approach allowed for the discovery of a significant number of DEGs and GO terms that are not common in the three cytolines and could therefore be linked to retrograde signaling. Filtering for DEGs with a fold regulation > 2 (absolute values) that are exclusive to just one of the cytolines, we find a total of 391 up- and down-DEGs. Similarly, there are 19 GO terms with a fold enrichment > 2 that are cytoline-specific. Using GBS data we report contrasting differences in the number of DEGs and GO terms in each cytoline, which correlate with the genetic distances between the mitochondrial genomes (but not chloroplast) and the original nuclei of the cytolines, respectively. CONCLUSIONS: The experimental design used here adds a new facet to the paradigm used to explain how gene expression changes in response to heat stress, capturing the influence exerted by different organelles upon one nucleus rather than investigating the response of several nuclei in their innate cytoplasmic environments.


Subject(s)
Heat-Shock Response , Zea mays , Zea mays/metabolism , Heat-Shock Response/genetics , Cytoplasm/genetics , Phenotype , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Plant
5.
Int J Genomics ; 2017: 9743749, 2017.
Article in English | MEDLINE | ID: mdl-28367438
6.
PLoS One ; 8(12): e85501, 2013.
Article in English | MEDLINE | ID: mdl-24392016

ABSTRACT

Maize has always been under constant human selection ever since it had been domesticated. Intensive breeding programs that resulted in the massive use of hybrids nowadays have started in the 60s. That brought significant yield increases but reduced the genetic diversity at the same time. Consequently, breeders and researchers alike turned their attention to national germplasm collections established decades ago in many countries, as they may hold allelic variations that could prove useful for future improvements. These collections are mainly composed of inbred lines originating from well-adapted local open pollinated varieties. However, there is an overall lack of data in the literature about the genetic diversity of maize in SE Europe, and its potential for future breeding efforts. There are no data, whatsoever, on the nutritional quality of the grain, primarily dictated by the zein proteins. We therefore sought to use the Romanian maize germplasm as an entry point in understanding the molecular make-up of maize in this part of Europe. By using 80 SSR markers, evenly spread throughout the genome, on 82 inbred lines from various parts of the country, we were able to decipher population structure and the existing relationships between those and the eight international standards used, including the reference sequenced genome B73. Corroborating molecular data with a standardized morphological, physiological, and biochemical characterization of all 90 inbred lines, this is the first comprehensive such study on the existing SE European maize germplasm. The inbred lines we present here are an important addition to the ever-shrinking gene pool that the breeding programs are faced-with, because of the allelic richness they hold. They may serve as parental lines in crosses that will lead to new hybrids, characterized by a high level of heterosis, nationwide and beyond, due to their existing relationship with the international germplasm.


Subject(s)
Genetic Variation , Inbreeding , Zea mays/genetics , Alleles , Europe , Heterozygote , Lipid Metabolism/genetics , Pigmentation/genetics , Plant Proteins/metabolism , Polymorphism, Genetic , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...