Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38140037

ABSTRACT

Complicated wounds often require specialized medical treatments, and hydrogels have emerged as a popular choice for wound dressings in such cases due to their unique properties and the ability to incorporate and release therapeutic agents. Our focus was to develop and characterize a new optimized formula for biohybrid hydrogel membranes, which combine natural and synthetic polymers, bioactive natural compounds, like collagen and hyaluronic acid, and pharmacologically active substances (doxycycline or npAg). Dynamic (oscillatory) rheometry confirmed the strong gel-like properties of the obtained hydrogel membranes. Samples containing low-dose DOXY showed a swelling index of 285.68 ± 6.99%, a degradation rate of 71.6 ± 0.91% at 20 h, and achieved a cumulative drug release of approximately 90% at pH 7.4 and 80% at pH 8.3 within 12 h. The addition of npAg influenced the physical properties of the hydrogel membranes. Furthermore, the samples containing DOXY demonstrated exceptional antimicrobial efficacy against seven selected bacterial strains commonly associated with wound infections and complications. Biocompatibility assessments revealed that the samples exhibited over 80% cell viability. However, the addition of smaller-sized nanoparticles led to decreased cellular viability. The obtained biohybrid hydrogel membranes show favorable properties that render them suitable for application as wound dressings.

2.
Gels ; 9(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37888351

ABSTRACT

The design and development of new luminescent metallogels formed by cyclometalated palladium(II) complexes in protic solvents were investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and rheology. Cyclometalated palladium(II) complexes based on imine ligand and ancillary benzoylthiourea (BTU) ligand showed red emission in solid and gel states. The formation of a lyotropic liquid crystal phase was observed for the complex bearing shorter alkyl groups on the BTU ligand. This complex also behaved as a thermotropic liquid crystal that displays a monotropic smectic A phase (SmA). Dynamic rheology measurements (frequency sweep in the 5-90 °C range) of the 1-decanol solution of palladium(II) complexes highlighted their supramolecular self-association ability to generate 3D networks and form gels as a final result.

3.
J Funct Biomater ; 14(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37754868

ABSTRACT

Herein, three different recipes of multi-component hydrogels were synthesized by e-beam irradiation. These hydrogels were obtained from aqueous polymer mixtures in which different proportions of bovine collagen gel, sodium carboxymethylcellulose (CMC), poly(vinylpyrrolidone), chitosan, and poly(ethylene oxide) were used. The cross-linking reaction was carried out exclusively by e-beam cross-linking at 25 kGy, a dose of irradiation sufficient both to complete the cross-linking reaction and effective for hydrogel sterilization. The hydrogels developed in this study were tested in terms of physical and chemical stability, mechanical, structural, morphological, and biological properties. They are transparent, maintain their structure, are non-adhesive when handling, and most importantly, especially from the application point of view, have an elastic structure. Likewise, these hydrogels possessed different swelling degrees and expressed rheological behavior characteristic of soft solids with permanent macromolecular network. Morphologically, collagen- and CMC based-hydrogels showed porous structures with homogeneously distributed pores assuring a good loading capacity with drugs. These hydrogels were investigated by indirect and direct contact studies with Vero cell line (CCL-81™, ATCC), demonstrating that they are well tolerated by normal cells and, therefore, showed promising potential for further use in the development of drug delivery systems based on hydrogels.

4.
Gels ; 8(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36547310

ABSTRACT

The incorporation of rare-earth ions into polymer matrices can lead to useful materials in various fields such as biomarkers, lasers, luminescent devices, optical storage materials, and so on. Methods of incorporation are either extremely simple, such as mixing the polymer and the ion of interest in adequate solvents, or more sophisticated such as synthesizing predesigned monomers that contain the rare-earth ion or binding the ion on an already formed polymer chain. Cationic gemini surfactants represent a class of surfactants that can be used to incorporate metal-oxygen cluster compounds by means of strong electrostatic interactions. In this study, first, a novel cationic gemini surfactant having double bonds on both side chains was designed and prepared. After characterization, the surfactant was used to synthesize hydrogels with different degrees of crosslinking and also as a surfmer in emulsion polymerization of methyl methacrylate. The resulted polymer matrices were able to bind europium-polyoxometalate Na9[EuW10O36].32H2O. In case of luminescent lanthanide ions, changing the microenvironment around the metal ion also changes the intensity of some emission peaks as well as other luminescent parameters. Investigation of emission spectra of Eu3+ indicates a decrease in the symmetry of the microenvironment, when the polyanions pass from water to latex, to surfactant solution, and to hydrogel.

5.
Materials (Basel) ; 15(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36363255

ABSTRACT

In this study, a collagen hydrogel using collagen exclusively produced in Romania, was obtained by electron beam (e-beam) crosslinking. The purpose of our study is to obtain new experimental data on the crosslinking of collagen and to predict as faithfully as possible, its behavior at high irradiation doses and energies. To pursue this, the correlations between macromolecular structure and properties of collagen hydrogels were determined by rheological analysis, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Differential Scanning Calorimetry (DSC), respectively. The gel fraction, swelling degree, and network parameters of the collagen hydrogels were also investigated at different irradiation doses. Through experimental exploration, we concluded that irradiation with e-beam up to 25 kGy induces crosslinking processes in collagen structure without producing advanced degradation processes. E-beam technology is a great method to develop new materials for medical applications without adding other chemical reagents harmful to human health. The future aim is to develop new wound dressings for rapid healing based on collagen, through irradiation technologies.

6.
Pharmaceutics ; 15(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36678705

ABSTRACT

The treatment of wounds occurring accidentally or as a result of chronic diseases most frequently requires the use of appropriate dressings, mainly to ensure tissue regeneration/healing, at the same time as treating or preventing potential bacterial infections or superinfections. Collagen type I-based scaffolds in tandem with adequate antimicrobials can successfully fulfill these requirements. In this work, starting from the corresponding hydrogels, we prepared a series of freeze-dried atelocollagen type I-based matrices loaded with tannic acid (TA) and chlorhexidine digluconate (CHDG) as active agents with a broad spectrum of antimicrobial activity and also as crosslinkers for the collagen network. The primary aim of this study was to design an original and reliable algorithm to in vitro monitor and kinetically analyze the simultaneous release of TA and CHDG from the porous matrices into an aqueous solution of phosphate-buffered saline (PBS, pH 7.4, 37 °C) containing micellar carriers of a cationic surfactant (hexadecyltrimethylammonium bromide, HTAB) as a release environment that roughly mimics human extracellular fluids in living tissues. Around this central idea, a comprehensive investigation of the lyophilized matrices (morpho-structural characterization through FT-IR spectroscopy, scanning electron microscopy, swelling behavior, resistance against the collagenolytic action of collagenase type I) was carried out. The kinetic treatment of the release data displayed a preponderance of non-Fickian-Case II diffusion behavior, which led to a general anomalous transport mechanism for both TA and CHDG, irrespective of their concentrations. This is equivalent to saying that the release regime is not governed only by the gradient concentration of the releasing components inside and outside the matrix (like in ideal Fickian diffusion), but also, to a large extent, by the relaxation phenomena of the collagen network (determined, in turn, by its crosslinking degree induced by TA and CHDG) and the dynamic capacity of the HTAB micelles to solubilize the two antimicrobials. By controlling the degree of physical crosslinking of collagen with a proper content of TA and CHDG loaded in the matrix, a tunable, sustainable release profile can be obtained.

7.
Gels ; 7(4)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34842676

ABSTRACT

In this study, several superabsorbent hybrid hydrogel compositions prepared from xanthan gum (XG)/sodium carboxymethylcellulose (CMC)/graphene oxide (GO) were synthesized by e-beam radiation crosslinking. We studied and evaluated the effects of GO content from the chemical structure of the hydrogels according to: sol-gel analysis, swelling degree, diffusion of water, ATR-FTIR spectroscopy, network structure, and dynamic mechanical analysis. The gel fraction and swelling properties of the prepared hydrogels depended on the polymer compositions and the absorbed dose. The hybrid XGCMCGO hydrogels showed superabsorbent capacity and reached equilibrium in less than 6 h. In particular, the XGCMCGO (70:30) hydrogel reached the highest swelling degree of about 6000%, at an irradiation dose of 15 kGy. The magnitude of the elastic (G') and viscous (G″) moduli were strongly dependent on the absorbed dose. When the degree of crosslinking was higher, the G' parameter was found to exceed 1000 Pa. In the case of the XGCMCGO (80:20) hydrogel compositions, the Mc and ξ parameters decreased with the absorbed dose, while crosslinking density increased, which demonstrated that we obtained a superabsorbent hydrogel with a permanent structure.

8.
Molecules ; 27(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35011421

ABSTRACT

Riboflavin under UVA radiation generates reactive oxygen species (ROS) that can induce various changes in biological systems. Under controlled conditions, these processes can be used in some treatments for ocular or dermal diseases. For instance, corneal cross-linking (CXL) treatment of keratoconus involves UVA irradiation combined with riboflavin aiming to induce the formation of new collagen fibrils in cornea. To reduce the damaging effect of ROS formed in the presence of riboflavin and UVA, the CXL treatment is performed with the addition of polysaccharides (dextran). Hyaluronic acid is a polysaccharide that can be found in the aqueous layer of the tear film. In many cases, keratoconus patients also present dry eye syndrome that can be reduced by the application of topical solutions containing hyaluronic acid. This study presents physico-chemical evidence on the effect of riboflavin on collagen fibril formation revealed by the following methods: differential scanning microcalorimetry, rheology, and STEM images. The collagen used was extracted from calf skin that contains type I collagen similar to that found in the eye. Spin trapping experiments on collagen/hyaluronic acid/riboflavin solutions evidenced the formation of ROS species by electron paramagnetic resonance measurements.


Subject(s)
Keratoconus/therapy , Photochemotherapy , Photosensitizing Agents/pharmacology , Riboflavin/pharmacology , Animals , Cattle , Collagen/chemistry , Collagen/metabolism , Cornea/drug effects , Cornea/metabolism , Cross-Linking Reagents , Humans , Hydrogen-Ion Concentration , Keratoconus/diagnosis , Keratoconus/etiology , Keratoconus/metabolism , Skin , Temperature , Ultraviolet Rays
9.
Gels ; 8(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35049562

ABSTRACT

In the present study, we report on the complex hydrogels formulations based on collagen-poly(vinyl pyrrolidone) (PVP)-poly(ethylene oxide) (PEO) cross-linked by e-beam irradiation in an aqueous polymeric solution, aiming to investigate the influence of different PEO concentrations on the hydrogel properties. The hydrogel networks' structure and their composition were investigated using equilibrium swelling degree, complex rheological analysis, and FT-IR spectroscopy. Rheological analysis was performed to determine the elastic (G') and viscous (G″) moduli, the average molecular weight between cross-linking points (Mc), cross-link density (Ve), and the mesh size (ξ). The effect of the PEO concentration on the properties of the hydrogel was investigated as well. Depending on the PEO concentration added in their composition, the hydrogels swelling degree depends on the absorbed dose, being lower at low PEO concentrations. All hydrogel formulations showed higher G' values (9.8 kPa) compared to G″ values (0.2 kPa), which shows that the hydrogels have a predominantly elastic behavior. They presented stability greater than 72 h in physiological pH buffers and reached equilibrium after 25 h. The Mc parameter is strongly dependent on the PEO concentration and the absorbed dose for all hydrogel compositions. The cross-linking density increased with the absorbed dose.

10.
Chemistry ; 24(51): 13512-13522, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-29923239

ABSTRACT

A series of liquid crystals with various lanthanide ions (EuIII , SmIII , and TbIII ) was designed and prepared starting from the corresponding lanthanide nitrates and N-alkylated 4-pyridone derivatives bearing mesogenic 3,4,5-tris(alkyloxy)benzyl moieties (alkyl=hexyl, octyl, decyl, dodecyl, tetradecyl, or hexadecyl). These new lanthanidomesogens were investigated for their mesogenic properties by a combination of differential scanning calorimetry, polarizing optical microscopy, and temperature-dependent powder X-ray diffraction (XRD). Their thermal stability was assessed by thermogravimetric analysis. All of these complexes show enantiotropic liquid-crystalline behavior with lamellar (SmA) phases in the case of shorter-chain complexes (C6 and C8 ) or hexagonal columnar phases (Colh ) for complexes with longer alkyl chains (C12 , C14 , and C16 ), which were assigned on the basis of their characteristic textures and XRD studies. For complexes with an intermediate number of carbon atoms in the side chains (C10 ), both a lamellar phase at lower temperatures and a Colh phase at higher temperatures were evidenced. In the solid state, all these complexes show characteristic emissions assigned to the corresponding lanthanide ion. In addition, the luminescence decay curves showed single-exponential decays with characteristic times in the millisecond range (0.75-0.90 ms for EuIII , 0.045-0.060 ms for SmIII , and 0.75-1.05 ms for TbIII ).

11.
J Phys Chem B ; 120(18): 4258-67, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27065050

ABSTRACT

The interaction of human serum albumin (HSA) with amphiphilic block copolymer Pluronic F127 has been investigated by several physical methods. Interest in studying this system stems from a broad range of bioactivities involving both macromolecules. Serum albumins constitute a significant class of proteins in the circulatory system, acting as carriers for a wide spectrum of compounds or assemblies. Pluronic block copolymers have revealed their capacity to ferry a variety of biologically active compounds. Circular dichroism, rheological measurements, and differential scanning microcalorimetry (µDSC) were employed to get insight into the interaction betweeen the two macromolecules. The results reveal that Pluronic F127 induces conformational changes to albumin if it is organized in a micellar form, while albumin influences the self-assembly of Pluronic F127 into micelles or gels. F127 micelles, however, induce smaller conformational changes compared to ionic surfactants. The µDSC thermograms obtained for HSA and/or F127 show that HSA shifts the critical micellar temperature (cmt) to lower values, while concurrently the HSA denaturation behavior is influenced by F127, depending on its concentration. Rheological measurements on solutions of F127 17% have shown that a sol-to-gel transition occurs at higher temperatures in the presence of HSA and the resulting gel is weaker. The global profile on HSA/F127 systems was complemented by local information provided by EPR measurements. A series of X-band EPR experiments was performed with spin probes 4-(N,N'-dimethyl-N-hexadecyl)ammonium-2,2',6,6'-tetramethylpiperidine-1-oxyl iodide (CAT16) and 5-doxyl stearic acid (5-DSA). These spin probes bind to albumin sites and are sensitive to phase transformations in Pluronic block copolymer solutions. For a given F127 concentration, the spin probe binds only to HSA below cmt and migrates to the F127 micelles above cmt. The collective data suggest soft interactions between the macromolecules, with the emerging results projecting potential applications linked to reaching optimal conditions for certain drug formulations.


Subject(s)
Poloxamer/chemistry , Serum Albumin, Human/chemistry , Calorimetry, Differential Scanning , Circular Dichroism , Electron Spin Resonance Spectroscopy , Gels/chemistry , Humans , Micelles , Poloxamer/metabolism , Rheology , Serum Albumin, Human/metabolism , Temperature , Thermodynamics
12.
Dalton Trans ; 44(32): 14196-9, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26194193

ABSTRACT

A new class of thermotropic lanthanidomesogens has been designed and prepared. They are based on 4-pyridone ligands that possess mesogenic cyanobiphenyl groups attached to the 4-pyridone unit via a flexible long alkyl spacer and show a very high thermal stability (decomposition temperatures near 300 °C). Depending on the alkyl length spacer, these complexes exhibit a SmA phase with transition temperatures influenced by the number of mesogenic groups employed and the spacer length.

13.
Dalton Trans ; 43(3): 1151-61, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24169598

ABSTRACT

In this work we report our studies concerning the synthesis and characterisation of a series of imine derivatives that incorporate the 2-phenylpyridine (2-ppy) core. These derivatives were used in the cyclometalating reactions of platinum(II) or palladium(II) in order to prepare several complexes with liquid crystalline properties. Depending on the starting materials used as well as the solvents employed, different metal complexes were obtained, some of them showing both liquid crystalline behaviour and luminescence properties at room temperature. It was found that, even if there are two competing coordination sites, the cyclometalation process takes place always at the 2-ppy core with (for Pt) or without (for Pd) the imine bond cleavage. We successfully showed that it is possible to prepare emissive room temperature liquid crystalline materials based on double cyclopalladated heteroleptic complexes by varying the volume fraction of the long flexible alkyl tails on the ancillary benzoylthiourea (BTU) ligands.

SELECTION OF CITATIONS
SEARCH DETAIL
...