Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pharmacol Res ; 205: 107242, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823470

ABSTRACT

Targeting the CCL2/CCR2 chemokine axis has been shown to be effective at relieving pain in rodent models of inflammatory and neuropathic pain, therefore representing a promising avenue for the development of non-opioid analgesics. However, clinical trials targeting this receptor for inflammatory conditions and painful neuropathies have failed to meet expectations and have all been discontinued due to lack of efficacy. To overcome the poor selectivity of CCR2 chemokine receptor antagonists, we generated and characterized the function of intracellular cell-penetrating allosteric modulators targeting CCR2, namely pepducins. In vivo, chronic intrathecal administration of the CCR2-selective pepducin PP101 was effective in alleviating neuropathic and bone cancer pain. In the setting of bone metastases, we found that T cells infiltrate dorsal root ganglia (DRG) and induce long-lasting pain hypersensitivity. By acting on CCR2-expressing DRG neurons, PP101 attenuated the altered phenotype of sensory neurons as well as the neuroinflammatory milieu of DRGs, and reduced bone cancer pain by blocking CD4+ and CD8+ T cell infiltration. Notably, PP101 demonstrated its efficacy in targeting the neuropathic component of bone cancer pain, as evidenced by its anti-nociceptive effects in a model of chronic constriction injury of the sciatic nerve. Importantly, PP101-induced reduction of CCR2 signaling in DRGs did not result in deleterious tumor progression or adverse behavioral effects. Thus, targeting neuroimmune crosstalk through allosteric inhibition of CCR2 could represent an effective and safe avenue for the management of chronic pain.

2.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798460

ABSTRACT

T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. mTregs are both necessary and sufficient for suppressing mechanical pain sensitivity in female but not male mice. Notably, the mTreg modulation of pain thresholds depends on sex-hormones and expansion of enkephalinergic mTregs during gestation imparts a remarkable pregnancy-induced analgesia in a pre-existing, chronic, unremitting neuropathic pain model. These results uncover a fundamental sex-specific, pregnancy-pronounced, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology and maternal health.

3.
Cancer Metastasis Rev ; 40(2): 427-445, 2021 06.
Article in English | MEDLINE | ID: mdl-33973098

ABSTRACT

Breast and prostate cancers have a great propensity to metastasize to long bones. The development of bone metastases is life-threatening, incurable, and drastically reduces patients' quality of life. The chemokines CCL2 and CXCL12 and their respective receptors, CCR2 and CXCR4, are central instigators involved in all stages leading to cancer cell dissemination and secondary tumor formation in distant target organs. They orchestrate tumor cell survival, growth and migration, tumor invasion and angiogenesis, and the formation of micrometastases in the bone marrow. The bone niche is of particular importance in metastasis formation, as it expresses high levels of CCL2 and CXCL12, which attract tumor cells and contribute to malignancy. The limited number of available effective treatment strategies highlights the need to better understand the pathophysiology of bone metastases and reduce the skeletal tumor burden in patients diagnosed with metastatic bone disease. This review focuses on the involvement of the CCL2/CCR2 and CXCL12/CXCR4 chemokine axes in the formation and development of bone metastases, as well as on therapeutic perspectives aimed at targeting these chemokine-receptor pairs.


Subject(s)
Bone Neoplasms/immunology , Bone Neoplasms/secondary , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Chemokine CCL2/immunology , Chemokine CXCL12/immunology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Animals , Female , Humans , Male
4.
J Neuroinflammation ; 18(1): 79, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33757529

ABSTRACT

BACKGROUND: Pain is reported as the leading cause of disability in the common forms of inflammatory arthritis conditions. Acting as a key player in nociceptive processing, neuroinflammation, and neuron-glia communication, the chemokine CCL2/CCR2 axis holds great promise for controlling chronic painful arthritis. Here, we investigated how the CCL2/CCR2 system in the dorsal root ganglion (DRG) contributes to the peripheral inflammatory pain sensitization. METHODS: Repeated intrathecal (i.t.) administration of the CCR2 antagonist, INCB3344 was tested for its ability to reverse the nociceptive-related behaviors in the tonic formalin and complete Freund's adjuvant (CFA) inflammatory models. We further determined by qPCR the expression of CCL2/CCR2, SP and CGRP in DRG neurons from CFA-treated rats. Using DRG explants, acutely dissociated primary sensory neurons and calcium mobilization assay, we also assessed the release of CCL2 and sensitization of nociceptors. Finally, we examined by immunohistochemistry following nerve ligation the axonal transport of CCL2, SP, and CGRP from the sciatic nerve of CFA-treated rats. RESULTS: We first found that CFA-induced paw edema provoked an increase in CCL2/CCR2 and SP expression in ipsilateral DRGs, which was decreased after INCB3344 treatment. This upregulation in pronociceptive neuromodulators was accompanied by an enhanced nociceptive neuron excitability on days 3 and 10 post-CFA, as revealed by the CCR2-dependent increase in intracellular calcium mobilization following CCL2 stimulation. In DRG explants, we further demonstrated that the release of CCL2 was increased following peripheral inflammation. Finally, the excitation of nociceptors following peripheral inflammation stimulated the anterograde transport of SP at their peripheral nerve terminals. Importantly, blockade of CCR2 reduced sensory neuron excitability by limiting the calcium mobilization and subsequently decreased peripheral transport of SP towards the periphery. Finally, pharmacological inhibition of CCR2 reversed the pronociceptive action of CCL2 in rats receiving formalin injection and significantly reduced the neurogenic inflammation as well as the stimuli-evoked and movement-evoked nociceptive behaviors in CFA-treated rats. CONCLUSIONS: Our results provide significant mechanistic insights into the role of CCL2/CCR2 within the DRG in the development of peripheral inflammation, nociceptor sensitization, and pain hypersensitivity. We further unveil the therapeutic potential of targeting CCR2 for the treatment of painful inflammatory disorders.


Subject(s)
Chemokine CCL2/metabolism , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Pain/metabolism , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/metabolism , Animals , Cells, Cultured , Freund's Adjuvant/toxicity , Ganglia, Spinal/drug effects , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Injections, Spinal , Male , Pain/chemically induced , Pain/drug therapy , Pyrrolidines/administration & dosage , Rats , Rats, Sprague-Dawley
5.
Neurosci Biobehav Rev ; 125: 168-192, 2021 06.
Article in English | MEDLINE | ID: mdl-33582232

ABSTRACT

Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.


Subject(s)
Pain , Quality of Life , Analgesics, Opioid , Female , Humans , Male , Neuroglia , Pain/drug therapy , Sex Characteristics
6.
Article in English | MEDLINE | ID: mdl-32360786

ABSTRACT

Long-term cognitive deficits are observed after treatment of brain tumors or metastases by radiotherapy. Treatment optimization thus requires a better understanding of the effects of radiotherapy on specific brain regions, according to their sensitivity and interconnectivity. In the present study, behavioral tests supported by immunohistology and magnetic resonance imaging provided a consistent picture of the persistent neurocognitive decline and neuroinflammation after the onset of irradiation-induced necrosis in the right primary somatosensory cortex of Fischer rats. Necrosis surrounded by neovascularization was first detected 54 days after irradiation and then spread to 110 days in the primary motor cortex, primary somatosensory region, striatum and right ventricle, resulting in fiber bundle disruption and demyelination in the corpus callosum of the right hemisphere. These structural damages translated into selective behavioral changes including spatial memory loss, disinhibition of anxiety-like behaviors, hyperactivity and pain hypersensitivity, but no significant alteration in motor coordination and grip strength abilities. Concomitantly, activated microglia and reactive astrocytes, accompanied by infiltration of leukocytes (CD45+) and T-cells (CD3+) cooperated to shape the neuroinflammation response. Overall, our study suggests that the slow and gradual onset of cellular damage would allow adaptation in brain regions that are susceptible to neuronal plasticity; while other cerebral structures that do not have this capacity would be more affected. The planning of radiotherapy, adjusted to the sensitivity and adaptability of brain structures, could therefore preserve certain neurocognitive functions; while higher doses of radiation could be delivered to brain areas that can better adapt to this treatment. In addition, strategies to block early post-radiation events need to be explored to prevent the development of long-term cognitive dysfunction.


Subject(s)
Brain/radiation effects , Cognitive Dysfunction/psychology , Encephalitis/pathology , Encephalitis/psychology , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/psychology , Animals , Behavior, Animal/radiation effects , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Diffusion Magnetic Resonance Imaging , Encephalitis/diagnostic imaging , Immunologic Surveillance/radiation effects , Magnetic Resonance Imaging , Male , Necrosis , Neovascularization, Pathologic/pathology , Neuronal Plasticity/radiation effects , Radiation Injuries, Experimental/diagnostic imaging , Rats , Rats, Inbred F344
8.
Sci Rep ; 9(1): 20155, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882872

ABSTRACT

Improvements in the survival of breast cancer patients have led to the emergence of bone health and pain management as key aspects of patient's quality of life. Here, we used a female rat MRMT-1 model of breast cancer-induced bone pain to compare the effects of three drugs used clinically morphine, nabilone and zoledronate on tumor progression, bone remodeling and pain relief. We found that chronic morphine reduced the mechanical hypersensitivity induced by the proliferation of the luminal B aggressive breast cancer cells in the tumor-bearing femur and prevented spinal neuronal and astrocyte activation. Using MTT cell viability assay and MRI coupled to 18FDG PET imaging followed by ex vivo 3D µCT, we further demonstrated that morphine did not directly exert tumor growth promoting or inhibiting effects on MRMT-1 cancer cells but induced detrimental effects on bone healing by disturbing the balance between bone formation and breakdown. In sharp contrast, both the FDA-approved bisphosphonate zoledronate and the synthetic cannabinoid nabilone prescribed as antiemetics to patients receiving chemotherapy were effective in limiting the osteolytic bone destruction, thus preserving the bone architecture. The protective effect of nabilone on bone metabolism was further accompanied by a direct inhibition of tumor growth. As opposed to zoledronate, nabilone was however not able to manage bone tumor-induced pain and reactive gliosis. Altogether, our results revealed that morphine, nabilone and zoledronate exert disparate effects on tumor growth, bone metabolism and pain control. These findings also support the use of nabilone as an adjuvant therapy for bone metastases.

9.
Mol Pain ; 122016.
Article in English | MEDLINE | ID: mdl-27306408

ABSTRACT

BACKGROUND: Accumulating evidence suggests that the C-C chemokine ligand 2 (CCL2, or monocyte chemoattractant protein 1) acts as a neuromodulator in the central nervous system through its binding to the C-C chemokine receptor 2 (CCR2). Notably, it is well established that the CCL2/CCR2 axis plays a key role in neuron-glia communication as well as in spinal nociceptive transmission. Gene silencing through RNA interference has recently emerged as a promising avenue in research and drug development, including therapeutic management of chronic pain. In the present study, we used 27-mer Dicer-substrate small interfering RNA (DsiRNA) targeting CCR2 and assessed their ability to reverse the nociceptive behaviors induced by spinal CCL2 injection or following intraplantar injection of complete Freund's adjuvant. RESULTS: To this end, we first developed high-potency DsiRNAs designed to target different sequences distributed across the rat CCR2 (rCCR2) messenger RNA. For optimization, methyl groups were added to the two most potent DsiRNA candidates (Evader and M7 2'-O-methyl modified duplexes) in order to improve in vivo duplex stability and to reduce potential immunostimulatory activity. Our results demonstrated that all modified candidates formulated with the cell-penetrating peptide reagent Transductin showed strong RNAi activity following intrathecal delivery, exhibiting >50% rCCR2 knockdown in lumbar dorsal root ganglia. Accordingly, we found that these DsiRNA duplexes were able to reduce spinal microglia activation and were effective at blocking CCL2-induced mechanical hypersensitivity. Along with similar reductions of rCCR2 messenger RNA, both sequences and methylation patterns were similarly effective in inhibiting the CCL2 nociceptive action for the whole seven days testing period, compared to mismatch DsiRNA. DsiRNAs against CCR2 also reversed the hypernociceptive responses observed in the complete Freund's adjuvant-induced inflammatory chronic pain model. CONCLUSION: Altogether, these results validate CCR2 as a an appropriate molecular target for pain control and demonstrate that RNAi-based gene therapy represent an highly specific alternative to classical pharmacological approaches to treat central pathologies such as chronic pain.


Subject(s)
Pain/metabolism , Pain/prevention & control , RNA, Small Interfering/metabolism , Receptors, CCR2/antagonists & inhibitors , Ribonuclease III/metabolism , Animals , Cell Shape , Fluorescence , Ganglia, Spinal/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Hyperalgesia/complications , Hyperalgesia/metabolism , Inflammation/complications , Inflammation/pathology , Male , Neuroglia/metabolism , Pain/complications , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Receptors, CCR2/genetics , Reproducibility of Results , Spinal Cord/metabolism , Substrate Specificity
10.
J Nucl Med ; 54(6): 944-52, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23596003

ABSTRACT

UNLABELLED: Despite tremendous progress in the management of breast cancer, the survival rate of this disease is still correlated with the development of metastases-most notably, those of the bone. Diagnosis of bone metastasis requires a combination of multiple imaging modalities. MR imaging remains the best modality for soft-tissue visualization, allowing for the distinction between benign and malignant lesions in many cases. On the other hand, PET imaging is frequently more specific at detecting bone metastasis by measuring the accumulation of radiotracers, such as (18)F-sodium fluoride ((18)F-NaF) and (18)F-FDG. Thus, the main purpose of this study was to longitudinally monitor bone tumor progression using PET/MR image coregistration to improve noninvasive imaging-assisted diagnoses. METHODS: After surgical implantation of mammary MRMT-1 cells in a rat femur, we performed minimally invasive imaging procedures at different time points throughout tumor development. The procedure consisted of sequential coregistered MR and PET image acquisition, using gadolinium-diethylenetriaminepentaacetic acid (DTPA) as a contrast agent for MR imaging and (18)F-FDG, (11)C-methionine, and (18)F-NaF as molecular tracers for PET imaging. The animals were then euthanized, and complementary radiologic (micro-CT scans) and histologic analyses were performed. RESULTS: In this preclinical study, we demonstrated that coregistered MR and PET images provide helpful information in a rat mammary-derived bone cancer model. First, MR imaging provided a high-definition anatomic resolution that made the localization of bone resorption and tumor extension detectable between days 9 and 18 after the injection of cancer cells in the medullary channel of the femur. Indeed, the calculation of mean standardized uptake value (SUVmean) and maximal SUV (SUVmax) in bone and soft-tissue regions, as defined from the gadolinium-DTPA contrast-enhanced MR images, showed (18)F-NaF uptake modifications and increased (18)F-FDG or (11)C-methionine uptake in the bone and surrounding soft tissues. (18)F-FDG and (11)C-methionine were compared in terms of the magnitude of change in their uptake and variability. We observed that (11)C-methionine SUVmean variations in the tumor were more important than those of (18)F-FDG. We also found fewer interindividual variations using SUVmean as a quantitative parameter than SUVmax. CONCLUSION: This preclinical evaluation demonstrated that a PET/MR image coregistration protocol provided a powerful tool to evaluate bone tumor progression in a rat model of bone metastasis and that this protocol could be translated to improve the clinical outcome for metastatic breast cancer management.


Subject(s)
Bone Neoplasms/diagnostic imaging , Bone Neoplasms/secondary , Magnetic Resonance Imaging , Mammary Neoplasms, Experimental/pathology , Positron-Emission Tomography , Animals , Biological Transport , Bone Neoplasms/metabolism , Disease Progression , Femur/diagnostic imaging , Follow-Up Studies , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...