Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 8(11): 1458-1473, 2018 11.
Article in English | MEDLINE | ID: mdl-30185628

ABSTRACT

In many solid tumors, parasympathetic input is provided by the vagus nerve, which has been shown to modulate tumor growth. However, whether cholinergic signaling directly regulates progression of pancreatic ductal adenocarcinoma (PDAC) has not been defined. Here, we found that subdiaphragmatic vagotomy in LSL-Kras +/G12D;Pdx1-Cre (KC) mice accelerated PDAC development, whereas treatment with the systemic muscarinic agonist bethanechol restored the normal KC phenotype, thereby suppressing the accelerated tumorigenesis caused by vagotomy. In LSL-Kras +/G12D;LSL-Trp53 +/R172H;Pdx1-Cre mice with established PDAC, bethanechol significantly extended survival. These effects were mediated in part through CHRM1, which inhibited downstream MAPK/EGFR and PI3K/AKT pathways in PDAC cells. Enhanced cholinergic signaling led to a suppression of the cancer stem cell (CSC) compartment, CD11b+ myeloid cells, TNFα levels, and metastatic growth in the liver. Therefore, these data suggest that cholinergic signaling directly and indirectly suppresses growth of PDAC cells, and therapies that stimulate muscarinic receptors may be useful in the treatment of PDAC.Significance: Subdiaphragmatic vagotomy or Chrm1 knockout accelerates pancreatic tumorigenesis, in part via expansion of the CSC compartment. Systemic administration of a muscarinic agonist suppresses tumorigenesis through MAPK and PI3K/AKT signaling, in early stages of tumor growth and in more advanced, metastatic disease. Therefore, CHRM1 may represent a potentially attractive therapeutic target. Cancer Discov; 8(11); 1458-73. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 1333.


Subject(s)
Carcinoma, Pancreatic Ductal/prevention & control , Cell Transformation, Neoplastic/drug effects , Cholinergic Agents/pharmacology , Neoplastic Stem Cells/drug effects , Pancreatic Neoplasms/prevention & control , Receptor, Muscarinic M1/physiology , Animals , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Genes, ras , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Signal Transduction , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...