Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(9): 16004-16015, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859238

ABSTRACT

Multilayer Laue lenses are volume diffractive optical elements for hard X-rays with the potential to focus beams to sizes as small as 1 nm. This ability is limited by the precision of the manufacturing process, whereby systematic errors that arise during fabrication contribute to wavefront aberrations even after calibration of the deposition process based on wavefront metrology. Such aberrations can be compensated by using a phase plate. However, current high numerical aperture lenses for nanometer resolution exhibit errors that exceed those that can be corrected by a single phase plate. To address this, we accumulate a large wavefront correction by propagation through a linear array of 3D-printed phase correcting elements. With such a compound refractive corrector, we report on a point spread function with a full-width at half maximum area of 2.9 × 2.8 nm2 at a photon energy of 17.5 keV.

2.
Nat Commun ; 15(1): 3827, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714735

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein's crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.


Subject(s)
Catalytic Domain , Coronavirus 3C Proteases , Cysteine , Disulfides , Oxidation-Reduction , SARS-CoV-2 , Disulfides/chemistry , Disulfides/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Cysteine/chemistry , Cysteine/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Protein Multimerization , COVID-19/virology
3.
Science ; 382(6674): 1015-1020, 2023 12.
Article in English | MEDLINE | ID: mdl-38033070

ABSTRACT

Photolyase is an enzyme that uses light to catalyze DNA repair. To capture the reaction intermediates involved in the enzyme's catalytic cycle, we conducted a time-resolved crystallography experiment. We found that photolyase traps the excited state of the active cofactor, flavin adenine dinucleotide (FAD), in a highly bent geometry. This excited state performs electron transfer to damaged DNA, inducing repair. We show that the repair reaction, which involves the lysis of two covalent bonds, occurs through a single-bond intermediate. The transformation of the substrate into product crowds the active site and disrupts hydrogen bonds with the enzyme, resulting in stepwise product release, with the 3' thymine ejected first, followed by the 5' base.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Crystallography , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/metabolism , DNA Repair , DNA Damage , Electron Transport
4.
Commun Biol ; 5(1): 805, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35953531

ABSTRACT

SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, facilitating cleavage of the viral polypeptide chain, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to support coronaviruses in evading the host's innate immune responses. We identified three phenolic compounds bound to PLpro, preventing essential molecular interactions to ISG15 by screening a natural compound library. The compounds identified by X-ray screening and complexed to PLpro demonstrate clear inhibition of PLpro in a deISGylation activity assay. Two compounds exhibit distinct antiviral activity in Vero cell line assays and one inhibited a cytopathic effect in non-cytotoxic concentration ranges. In the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Allosteric Site , Antiviral Agents/pharmacology , Coronavirus Papain-Like Proteases , Humans , Papain/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2
5.
Sensors (Basel) ; 22(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35890871

ABSTRACT

Inspection in confined spaces and difficult-to-access machines is a challenging quality assurance task and particularly difficult to quantify and automate. Using the example of aero engine inspection, an approach for the high-precision inspection of movable turbine blades in confined spaces will be demonstrated. To assess the condition and damages of turbine blades, a borescopic inspection approach in which the pose of the turbine blades is estimated on the basis of measured point clouds is presented. By means of a feature extraction approach, film-cooling holes are identified and used to pre-align the measured point clouds to a reference geometry. Based on the segmented features of the measurement and reference geometry a RANSAC-based feature matching is applied, and a multi-stage registration process is performed. Subsequently, an initial damage assessment of the turbine blades is derived, and engine disassembly decisions can be assisted by metric geometry deviations. During engine disassembly, the blade root is exposed to high disassembly forces, which can damage the blade root and is crucial for possible repair. To check for dismantling damage, a fast inspection of the blade root is executed using the borescopic sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...