Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(31): eabn2733, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35921408

ABSTRACT

With full knowledge of a material's atomistic structure, it is possible to predict any macroscopic property of interest. In practice, this is hindered by limitations of the chosen characterization techniques. For example, electron microscopy is unable to detect the smallest and most numerous defects in irradiated materials. Instead of spatial characterization, we propose to detect and quantify defects through their excess energy. Differential scanning calorimetry of irradiated Ti measures defect densities five times greater than those determined using transmission electron microscopy. Our experiments also reveal two energetically distinct processes where the established annealing model predicts one. Molecular dynamics simulations discover the defects responsible and inform a new mechanism for the recovery of irradiation-induced defects. The combination of annealing experiments and simulations can reveal defects hidden to other characterization techniques and has the potential to uncover new mechanisms behind the evolution of defects in materials.

2.
J Am Chem Soc ; 135(49): 18248-51, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24256474

ABSTRACT

Titanium is the ninth most abundant element, fourth among common metals, in the Earth's crust. Apart from some high-value applications in, e.g., the aerospace, biomedicine, and defense industries, the use of titanium in industrial or civilian applications has been extremely limited because of its high embodied energy and high cost. However, employing titanium would significantly reduce energy consumption of mechanical systems such as civilian transportation vehicles, which would have a profound impact on the sustainability of a global economy and the society of the future. The root cause of the high cost of titanium is its very strong affinity for oxygen. Conventional methods for Ti extraction involve several energy-intensive processes, including upgrading ilmenite ore to Ti-slag and then to synthetic rutile, high-temperature carbo-chlorination to produce TiCl4, and batch reduction of TiCl4 using Mg or Na (Kroll or Hunter process). This Communication describes a novel chemical pathway for extracting titanium metal from the upgraded titanium minerals (Ti-slag) with 60% less energy consumption than conventional methods. The new method involves direct reduction of Ti-slag using magnesium hydride, forming titanium hydride, which is subsequently purified by a series of chemical leaching steps. By directly reducing Ti-slag in the first step, Ti is chemically separated from impurities without using high-temperature processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...