Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5411, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926336

ABSTRACT

Most rod-shaped bacteria elongate by inserting new cell wall material into the inner surface of the cell sidewall. This is performed by class A penicillin binding proteins (PBPs) and a highly conserved protein complex, the elongasome, which moves processively around the cell circumference and inserts long glycan strands that act as barrel-hoop-like reinforcing structures, thereby giving rise to a rod-shaped cell. However, it remains unclear how elongasome synthesis dynamics and termination events are regulated to determine the length of these critical cell-reinforcing structures. To address this, we developed a method to track individual elongasome complexes around the entire circumference of Bacillus subtilis cells for minutes-long periods using single-molecule fluorescence microscopy. We found that the B. subtilis elongasome is highly processive and that processive synthesis events are frequently terminated by rapid reversal or extended pauses. We found that cellular levels of RodA regulate elongasome processivity, reversal and pausing. Our single-molecule data, together with stochastic simulations, show that elongasome dynamics and processivity are regulated by molecular motor tug-of-war competition between several, likely two, oppositely oriented peptidoglycan synthesis complexes associated with the MreB filament. Altogether these results demonstrate that molecular motor tug-of-war is a key regulator of elongasome dynamics in B. subtilis, which likely also regulates the cell shape via modulation of elongasome processivity.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Cell Wall , Penicillin-Binding Proteins , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Cell Wall/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Penicillin-Binding Proteins/metabolism , Penicillin-Binding Proteins/genetics , Peptidoglycan/metabolism , Peptidoglycan/biosynthesis , Microscopy, Fluorescence , Single Molecule Imaging , Molecular Motor Proteins/metabolism , Molecular Motor Proteins/genetics
3.
Nat Protoc ; 17(3): 847-869, 2022 03.
Article in English | MEDLINE | ID: mdl-35102310

ABSTRACT

Light microscopy is indispensable for analysis of bacterial spatial organization, yet the sizes and shapes of bacterial cells pose unique challenges to imaging. Bacterial cells are not much larger than the diffraction limit of visible light, and many species have cylindrical shapes and so lie flat on microscope coverslips, yielding low-resolution images when observing their short axes. In this protocol, we describe a pair of recently developed methods named VerCINI (vertical cell imaging by nanostructured immobilization) and µVerCINI (microfluidic VerCINI) that greatly increase spatial resolution and image quality for microscopy of the short axes of bacteria. The concept behind both methods is that cells are imaged while confined vertically inside cell traps made from a nanofabricated mold. The mold is a patterned silicon wafer produced in a cleanroom facility using electron-beam lithography and deep reactive ion etching, which takes ~3 h for fabrication and ~12 h for surface passivation. After obtaining a mold, the entire process of making cell traps, imaging cells and processing images can take ~2-12 h, depending on the experiment. VerCINI and µVerCINI are ideal for imaging any process along the short axes of bacterial cells, as they provide high-resolution images without any special requirements for fluorophores or imaging modalities, and can readily be combined with other imaging methods (e.g., STORM). VerCINI can easily be incorporated into existing projects by researchers with expertise in bacteriology and microscopy. Nanofabrication can be either done in-house, requiring specialist facilities, or outsourced based on this protocol.


Subject(s)
Microscopy , Nanostructures , Bacteria , Fluorescent Dyes , Microscopy/methods , Silicon
4.
Mar Biotechnol (NY) ; 23(6): 928-942, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34714445

ABSTRACT

Barnacle adhesion is a focus for fouling-control technologies as well as the development of bioinspired adhesives, although the mechanisms remain very poorly understood. The barnacle cypris larva is responsible for surface colonisation. Cyprids release cement from paired glands that contain proteins, carbohydrates and lipids, although further compositional details are scant. Several genes coding for cement gland-specific proteins were identified, but only one of these showed database homology. This was a lysyl oxidase-like protein (lcp_LOX). LOX-like enzymes have been previously identified in the proteome of adult barnacle cement secretory tissue. We attempted to produce recombinant LOX in E. coli, in order to identify its role in cyprid cement polymerisation. We also produced two other cement gland proteins (lcp3_36k_3B8 and lcp2_57k_2F5). lcp2_57k_2F5 contained 56 lysine residues and constituted a plausible substrate for LOX. While significant quantities of soluble lcp3_36k_3B8 and lcp2_57k_2F5 were produced in E. coli, production of stably soluble lcp_LOX failed. A commercially sourced human LOX catalysed the crosslinking of lcp2_57k_2F5 into putative dimers and trimers, and this reaction was inhibited by lcp3_36k_3B8. Inhibition of the lcp_LOX:lcp2_57k_2F5 reaction by lcp3_36k_3B8 appeared to be substrate specific, with no inhibitory effect on the oxidation of cadaverine by LOX. The results demonstrate a possible curing mechanism for barnacle cyprid cement and, thus, provide a basis for a more complete understanding of larval adhesion for targeted control of marine biofouling and adhesives for niche applications.


Subject(s)
Biofouling , Thoracica , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Larva/genetics , Larva/metabolism , Oxidative Stress , Proteome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...