Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(30): 27279-27287, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31265242

ABSTRACT

This work introduces a piezoelectric-pyroelectric nanogenerator (P-PNG) based on methylammonium lead iodide (CH3NH3PbI3) incorporated electrospun poly(vinylidene fluoride) (PVDF) nanofibers that are able to harvest mechanical and thermal energies. During the application of a periodic compressive contact force at a frequency of 4 Hz, an output voltage of ∼220 mV is generated. The P-PNG has a piezoelectric coefficient (d33) of ∼19.7 pC/N coupled with a high durability (60 000 cycles) and quick response time (∼1 ms). The maximum generated output power density (∼0.8 mW/m2) is sufficient to charge up a variety of capacitors, with the potential to replace an external power supply to drive portable devices. In addition, upon exposure to cyclic heating and cooling at a temperature of 38 K, a pyroelectric output current of 18.2 pA and a voltage of 41.78 mV were achieved. The fast response time of 1.14 s, reset time of 1.25 s, and pyroelectric coefficient of ∼44 pC/m2 K demonstrate a self-powered temperature sensing capability of the P-PNG. These characteristics make the P-PNG suitable for flexible piezoelectric-pyroelectric energy harvesting for self-powered electronic devices.


Subject(s)
Electric Power Supplies , Methylamines/chemistry , Nanofibers/chemistry , Iodides/chemistry , Lead/chemistry , Phase Transition , Polyvinyls/chemistry
2.
ACS Appl Mater Interfaces ; 10(4): 4121-4130, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29308647

ABSTRACT

Methylammonium lead iodide (CH3NH3PbI3) (MAPI)-embedded ß-phase comprising porous poly(vinylidene fluoride) (PVDF) composite (MPC) films turns to an excellent material for energy harvester and photodetector (PD). MAPI enables to nucleate up to ∼91% of electroactive phase in PVDF to make it suitable for piezoelectric-based mechanical energy harvesters (PEHs), sensors, and actuators. The piezoelectric energy generation from PEH made with MPC film has been demonstrated under a simple human finger touch motion. In addition, the feasibility of photosensitive properties of MPC films are manifested under the illumination of nonmonochromatic light, which also promises the application as organic photodetectors. Furthermore, fast rising time and instant increase in the current under light illumination have been observed in an MPC-based photodetector (PD), which indicates of its potential utility in efficient photoactive device. Owing to the photoresponsive and electroactive nature of MPC films, a new class of stand-alone self-powered flexible photoactive piezoelectric energy harvester (PPEH) has been fabricated. The simultaneous mechanical energy-harvesting and visible light detection capability of the PPEH is promising in piezo-phototronics technology.

3.
J Mater Chem B ; 5(35): 7352-7359, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-32264185

ABSTRACT

Flexible and wearable piezoelectric bio e-skin (PBio-e-skin) based on electrospun poly(l-lactic acid) PLLA nanofiber membrane is demonstrated for non-invasive human physiological signal monitoring and detecting dynamic tactile stimuli. The molecular orientations of the C[double bond, length as m-dash]O dipoles by electrospinning technique result in a longitudinal piezoelectric charge co-efficient (d33) value of ∼(3 ± 1) pm V-1 realized by piezoresponse force microscopy, allowing the PBio-e-skin for pressure sensing applications. The robust mechanical strength (Young's modulus ∼50 MPa) of nanofiber membrane ensures PBio-e-skin's superior operational stability over 375 000 cycles. Owing to the superior mechanosensitivity of ∼22 V N-1, PBio-e-skin has the ability to measure subtle movement of muscle in the internal organs such as esophagus, trachea, motion of joints and arterial pressure by recognition of strains on human skin. This flexible and light weight PBio-e-skin precisely detects vital signs and provides important clinical insights without using any external power source. Eventually, the low cost, environmental friendly PBio-e-skin will have a huge impact in a broad range of applications including self-powered wearable health care systems, human-machine interfacing devices, artificial intelligence and prosthetic skin.

4.
Nanotechnology ; 27(21): 215401, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27082858

ABSTRACT

A remarkable improvement in the dielectric breakdown strength (Eb) and discharge energy density (U e) of flexible polymer nanocomposites is realized by the incorporation of unmodified smectite montmorillonite (MMT) nanoclay into a poly(vinylidene fluoride) (PVDF) matrix. The resulting PVDF/MMT clay nanocomposite (PCN) films stabilize the γ phase and increase the path tortuosity via strong intercalation of the PVDF matrix into inorganic layered silicates without sacrificing the quality of surface morphology. The PCN films exhibits superior dielectric properties (up to ε r ∼ 28 and tan δ ∼ 0.032 at 1 kHz) than those of pure PVDF. As a result, a large increase in E b of 873 MV m(-1) and U e of 24.9 J cm(-3) is achieved. Subsequently, the PCN films possess more than 60% charge-discharge efficiency even at higher electric field and thus provide a scope to develop high energy density flexible and transparent materials for energy storage technologies.

5.
ACS Appl Mater Interfaces ; 7(34): 19091-7, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26284899

ABSTRACT

We demonstrate the requirement of electrical poling can be avoided in flexible piezoelectric nanogenerators (FPNGs) made of low-temperature hydrothermally grown wurtzite zinc sulfide nanorods (ZnS-NRs) blended with polydimethylsiloxane (PDMS). It has been found that conductive fillers, such as polyaniline (PANI) and multiwall carbon nanotubes (MWCNTs), can subsequently improve the overall performance of FPNG. A large electrical throughput (open circuit voltage ∼35 V with power density ∼2.43 µW/cm(3)) from PANI supplement added nanogenerator (PZP-FPNG) indicates that it is an effective means to replace the MWCNTs filler. The time constant (τ) estimated from the transient response of the capacitor charging curves signifying that the FPNGs are very much capable to charge the capacitors in very short time span (e.g., 3 V is accomplished in 50 s) and thus expected to be perfectly suitable in portable, wearable and flexible electronics devices. We demonstrate that FPNG can instantly lit up several commercial Light Emitting Diodes (LEDs) (15 red, 25 green, and 55 blue, individually) and power up several portable electronic gadgets, for example, wrist watch, calculator, and LCD screen. Thus, a realization of potential use of PANI in low-temperature-synthesized ZnS-NRs comprising piezoelectric based nanogenerator fabrication is experimentally verified so as to acquire a potential impact in sustainable energy applications. Beside this, wireless piezoelectric signal detection possibility is also worked out where a concept of self-powered smart sensor is introduced.

6.
J Mol Model ; 18(6): 2621-31, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22080306

ABSTRACT

In a pursuit of electronic level understanding of the antioxidant activity of a series of flavonoids, quantitative structure-activity relationship (QSAR) studies have been carried out using density functional theory (DFT) based quantum chemical descriptors. The best QSAR model have been selected for which the computed square correlation coefficient r(2) = 0.937 and cross-validated squared correlation coefficient q(2) =0.916. The QSAR model indicates that hardness (η), group electrophilic frontier electron density (F(E)(A)) and group philicity (ω(B)(+)) of individual molecules are responsible for in vitro biological activity. To the best our knowledge, the group electrophilic frontier electron density (F(E)(A)) has been used for the first time to explain the radical scavenging activity (RSA) of flavonoids. The excellent correlation between the RSA and the above mentioned DFT based descriptors lead us to predict new antioxidants having very good antioxidant activity.


Subject(s)
Computer Simulation , Flavonoids/chemistry , Free Radical Scavengers/chemistry , Quantitative Structure-Activity Relationship , Quantum Theory , Algorithms , Drug Design , Free Radicals/chemistry , Linear Models , Models, Chemical , Pyrones/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...