Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
Add more filters











Publication year range
1.
Light Sci Appl ; 12(1): 279, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37996468

ABSTRACT

The carrier-envelope phase (CEP) of an ultrashort laser pulse is becoming more crucial to specify the temporal characteristic of the pulse's electric field when the pulse duration becomes shorter and attains the subcycle regime; here, the pulse duration of the intensity envelope is shorter than one cycle period of the carrier field oscillation. When this subcycle pulse involves a structured wavefront as is contained in an optical vortex (OV) pulse, the CEP has an impact on not only the temporal but also the spatial characteristics owing to the spatiotemporal coupling in the structured optical pulse. However, the direct observation of the spatial effect of the CEP control has not yet been demonstrated. In this study, we report on the measurement and control of the spatial wavefront of a subcycle OV pulse by adjusting the CEP. To generate subcycle OV pulses, an optical parametric amplifier delivering subcycle Gaussian pulses and a Sagnac interferometer as a mode converter were integrated and provided an adequate spectral adaptability. The pulse duration of the generated OV pulse was 4.7 fs at a carrier wavelength of 1.54 µm. To confirm the wavefront control with the alteration of the CEP, we developed a novel [Formula: see text]-2[Formula: see text] interferometer that exhibited spiral fringes originating from the spatial interference between the subcycle OV pulse and the second harmonic of the subcycle Gaussian pulse producing a parabolic wavefront as a reference; this resulted in the successful observation of the rotation of spiral interference fringes during CEP manipulation.

2.
Opt Lett ; 47(13): 3371-3374, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35776627

ABSTRACT

Based on dual-chirped optical parametric amplification (DC-OPA) and type-I BiB3O6 (BiBO) crystals, the generation of >100 mJ, 10.4 fs, 10 Hz, carrier-envelope phase (CEP)-stable laser pulses, which are centered at 1.7 µm, was demonstrated producing a peak power of 10 TW. CEP-dependent high harmonic generation (HHG) was implemented to confirm the sub-two-cycle pulse duration and CEP stabilization of infrared (IR) laser pulses. As far as we know, the obtained pulse energy and peak power represented the highest values for sub-two-cycle CEP-stable IR optical parametric amplification. Additionally, the prospects of achieving high-energy water window isolated attosecond pulses (IAPs) via our developed laser source were discussed.

3.
Opt Express ; 30(7): 10818-10832, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473040

ABSTRACT

We demonstrate the scanning and control of the carrier-envelope phases (CEPs) of two adjacent spectral components totally spanning more than one-octave in the short-wave infrared (SWIR) wavelength region by operating two individual acousto-optic programmable dispersive filters (AOPDFs) applied to each of the two spectral components. The total CEP shift of the synthesized sub-cycle pulse composed of the two spectral components is controlled with simultaneous scans of the two CEPs. The resultant error of the controlled CEP was 642 mrad, so that this technique is useful for searching zero CEP of the synthesized pulse with the maximum field amplitude. In addition, we conduct a closed feedback loop to compensate for the CEP fluctuation by using the two AOPDFs together. As a result, we succeed to reduce the rms error of the CEP from 399 mrad to 237 mrad.

4.
Opt Express ; 29(18): 29021-29033, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34615020

ABSTRACT

Wavefront distortion in temporal focusing microscopy (TFM) results in a distorted temporal profile of the excitation pulses owing to spatio-temporal coupling. Since the pulse duration is dramatically changed in the excitation volume, it is difficult to correct the temporal profile for a thick sample. Here, we demonstrate adaptive optics (AO) correction in a thick sample. We apply structured illumination microscopy (SIM) to an AO correction in wide-field TFM to decrease the change in the pulse duration in the signal detection volume. The AO correction with SIM was very successful in a thick sample for which AO correction with TFM failed.

5.
Rev Sci Instrum ; 92(6): 063001, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34243496

ABSTRACT

In our recent study [Fu et al., Commun. Phys. 3(1), 92 (2020)], we have developed an approach for energy-scaling of high-order harmonic generation in the water-window region under a neutral-medium condition. More specifically, we obtained a nanojoule-class water-window soft x-ray harmonic beam under a phase-matching condition. It has been achieved by combining a newly developed terawatt-class mid-infrared femtosecond laser and a loose-focusing geometry for high-order harmonic generation. The generated beam is more than 100 times intense compared to previously reported results. The experimental setup included two key parts: a terawatt mid-infrared femtosecond driving laser [Fu et al., Sci. Rep. 8(1), 7692 (2018)] and a specially designed gas cell. Despite the dramatic drop in the optimal gas pressure for phase-matching due to loose-focusing geometry, it still reached the 1 bar level for helium. Thus, we have designed a double-structured pulsed-gas cell with a differential pumping system, which enabled providing sufficiently high gas pressure. Moreover, it allowed reducing gas consumption significantly. A robust energy-scalable apparatus for high-order harmonic generation developed in this study will enable the generation of over ten-nanojoule water-window attosecond pulses in the near future.

6.
Light Sci Appl ; 9: 168, 2020.
Article in English | MEDLINE | ID: mdl-33042531

ABSTRACT

High-order harmonic generation (HHG) is currently utilized for developing compact table-top radiation sources to provide highly coherent extreme ultraviolet (XUV) and soft X-ray pulses; however, the low repetition rate of fundamental lasers, which is typically in the multi-kHz range, restricts the area of application for such HHG-based radiation sources. Here, we demonstrate a novel method for realizing a MHz-repetition-rate coherent XUV light source by utilizing intracavity HHG in a mode-locked oscillator with an Yb:YAG thin disk laser medium and a 100-m-long ring cavity. We have successfully implemented HHG by introducing two different rare gases into two separate foci and picking up each HH beam. Owing to the two different HH beams generated from one cavity, this XUV light source will open a new route to performing a time-resolved measurement with an XUV-pump and XUV-probe scheme at a MHz-repetition rate with a femtosecond resolution.

7.
Nat Commun ; 11(1): 3413, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32641703

ABSTRACT

Few-cycle short-wave infrared (SWIR) pulses are useful tools for research on strong-field physics and nonlinear optics. Here we demonstrate the amplification of sub-cycle pulses in the SWIR region by using a cascaded BBO-based optical parametric amplifier (OPA) chain. By virtue of the tailored wavelength of the pump pulse of 708 nm, we successfully obtained a gain bandwidth of more than one octave for a BBO crystal. The division and synthesis of the spectral components of the pulse in a Mach-Zehnder-type interferometer set in front of the final amplifier enabled us to control the dispersion of each spectral component using an acousto-optic programmable dispersive filter inserted in each arm of the interferometer. As a result, we successfully generated 0.73-optical-cycle pulses at 1.8 µm with a pulse energy of 32 µJ.

8.
Sci Adv ; 6(16): eaay2802, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32494595

ABSTRACT

A stable 50-mJ three-channel optical waveform synthesizer is demonstrated and used to reproducibly generate a high-order harmonic supercontinuum in the soft x-ray region. This synthesizer is composed of pump pulses from a 10-Hz repetition-rate Ti:sapphire pump laser and signal and idler pulses from an infrared two-stage optical parametric amplifier driven by this pump laser. With full active stabilization of all relative time delays, relative phases, and the carrier-envelope phase, a shot-to-shot stable intense continuum harmonic spectrum is obtained around 60 eV with pulse energy above 0.24 µJ. The peak power of the soft x-ray continuum is evaluated to be beyond 1 GW with a 170-as transform limit duration. We found a characteristic delay dependence of the multicycle waveform synthesizer and established its control scheme. Compared with the one-color case, we experimentally observe an enhancement of the cutoff spectrum intensity by one to two orders of magnitude using three-color waveform synthesis.

9.
Opt Express ; 28(10): 15138-15147, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32403546

ABSTRACT

This paper presents the optimization of a dual-chirped optical parametric amplification (DC-OPA) scheme for producing an ultrafast intense infrared (IR) pulse. By employing a total energy of 0.77 J Ti:sapphire pump laser and type-I BBO crystals, an IR pulse energy at the center wavelength of 1.7 µm exceeded 0.1 J using the optimized DC-OPA. By adjusting the injected seed spectrum and prism pair compressor with a gross throughput of over 70%, the 1.7-µm pulse was compressed to 31 fs, which resulted in a peak power of up to 2.3 TW. Based on the demonstration of the BBO type-I DC-OPA, we propose a novel OPA scheme called the "dual pump DC-OPA" for producing a high-energy IR pulse with a two-cycle duration.

10.
Sci Rep ; 9(1): 1754, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30741978

ABSTRACT

We achieve a considerable improvement in proposed schemes for the selective photoionization of odd mass zirconium isotopes. The technique implements intermediate-state alignment for isotope-selective laser excitation by broadband pulsed lasers, which incorporates the spectroscopic selection rules for the absorption of polarized light. The improvement includes newly found intermediate levels, where J = 0 character as a third excited-state intermediate, in cooperation with four-step photoexcitation (J = 2-1-1-0 scheme). Isotope selectivity (separation coefficient for 91Zr: >2400) has been identified in addition to a significant enhancement of ionization efficiency (30×) compared with previous research. A search for suitable third intermediate levels has covered over autoionizing Rydberg states in a singly ionized Zr II region (up to 58 000 cm-1). The measured autoionizing Rydberg states show high photoion yields but are not identified as favoured isotopic selectivity, as observed in the four-step photoionization. Prospects and future directions in laser even/odd-mass isotope separation are discussed.

11.
Sci Rep ; 8(1): 7692, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29769544

ABSTRACT

Expansion of the wavelength range for an ultrafast laser is an important ingredient for extending its range of applications. Conventionally, optical parametric amplification (OPA) has been employed to expand the laser wavelength to the infrared (IR) region. However, the achievable pulse energy and peak power have been limited to the mJ and the GW level, respectively. A major difficulty in the further energy scaling of OPA results from a lack of suitable large nonlinear crystals. Here, we circumvent this difficulty by employing a dual-chirped optical parametric amplification (DC-OPA) scheme. We successfully generate a multi-TW IR femtosecond laser pulse with an energy of 100 mJ order, which is higher than that reported in previous works. We also obtain excellent energy scaling ability, ultrashort pulses, flexiable wavelength tunability, and high-energy stability, which prove that DC-OPA is a superior method for the energy scaling of IR pulses to the 10 J/PW level.

12.
Biomed Opt Express ; 9(4): 1510-1519, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29675298

ABSTRACT

Super-resolution microscopy has become a powerful tool for biological research. However, its spatial resolution and imaging depth are limited, largely due to background light. Interferometric temporal focusing (ITF) microscopy, which combines structured illumination microscopy and three-photon excitation fluorescence microscopy, can overcome these limitations. Here, we demonstrate ITF microscopy using three-photon excitation fluorescence, which has a spatial resolution of 106 nm at an imaging depth of 100 µm with an excitation wavelength of 1060 nm.

13.
ACS Appl Bio Mater ; 1(5): 1667-1676, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-34996216

ABSTRACT

Cancer cells undergo dramatic morphology changes when migrating in confined spaces narrower than their diameter during metastasis, and thus it is necessary to understand the deformation mechanism and associated molecular events in order to study tumor progression. To this end, we propose a new biochip with three-dimensional (3D) polymer nanostructures in a closed glass microfluidic chip. "Ship-in-a-bottle" femtosecond laser processing is an exclusive technique to flexibly create 3D small details in biochips. The wavefront correction by the spatial light modulator significantly improves the fabrication resolution of this technique. The device could then accommodate defect-free 3D biomimetic nanoconfigurations for the evaluation of prostate cancer cell migration in confined spaces. Specifically, polymeric channels with widths of ∼900 nm, which is more than one order of magnitude smaller than the cell size, are integrated by femtosecond laser inside glass channels. The cells are responsive to an in-channel gradient of epidermal growth factor and can migrate a distance greater than 20 µm. After migration, the cells suffer partial cytokinesis, followed by fusion of the divided parts back into single cell bodies.

14.
Biomed Opt Express ; 8(6): 2796-2806, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28663907

ABSTRACT

Temporal focusing (TF) microscopy is a wide-field two-photon excitation fluorescence (2PEF) microscopy technique, the optical sectioning capability of which is lower than that of point-scanning 2PEF microscopy. Here we demonstrate TF microscopy using three-photon excitation fluorescence (3PEF), which enhances the optical sectioning capability. As an excitation light source for the 3PEF, we developed an Yb-fiber chirped pulse amplifier, which produces 92-fs 9.0-µJ 1060-nm pulses at a repetition rate of 200 kHz. The optical sectioning capability was improved by a factor of 1.3 compared with that of 2PEF-TF microscopy. We also demonstrate dual-color imaging with both 2PEF and 3PEF.

15.
Sci Rep ; 7: 42540, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28198395

ABSTRACT

Terahertz (THz) imaging has a strong potential for applications because many molecules have fingerprint spectra in this frequency region. Spectroscopic imaging in the THz region is a promising technique to fully exploit this characteristic. However, the performance of conventional techniques is restricted by the requirement of multidimensional scanning, which implies an image data acquisition time of several minutes. In this study, we propose and demonstrate a novel broadband THz spectroscopic imaging method that enables real-time image acquisition using a high-sensitivity THz camera. By exploiting the two-dimensionality of the detector, a broadband multi-channel spectrometer near 1 THz was constructed with a reflection type diffraction grating and a high-power THz source. To demonstrate the advantages of the developed technique, we performed molecule-specific imaging and high-speed acquisition of two-dimensional (2D) images. Two different sugar molecules (lactose and D-fructose) were identified with fingerprint spectra, and their distributions in one-dimensional space were obtained at a fast video rate (15 frames per second). Combined with the one-dimensional (1D) mechanical scanning of the sample, two-dimensional molecule-specific images can be obtained only in a few seconds. Our method can be applied in various important fields such as security and biomedicine.

16.
Microsyst Nanoeng ; 3: 16078, 2017.
Article in English | MEDLINE | ID: mdl-31057849

ABSTRACT

This paper presents a simple technique to fabricate new electrofluidic devices for the three-dimensional (3D) manipulation of microorganisms by hybrid subtractive and additive femtosecond (fs) laser microfabrication (fs laser-assisted wet etching of glass followed by water-assisted fs laser modification combined with electroless metal plating). The technique enables the formation of patterned metal electrodes in arbitrary regions in closed glass microfluidic channels, which can spatially and temporally control the direction of electric fields in 3D microfluidic environments. The fabricated electrofluidic devices were applied to nanoaquariums to demonstrate the 3D electro-orientation of Euglena gracilis (an elongated unicellular microorganism) in microfluidics with high controllability and reliability. In particular, swimming Euglena cells can be oriented along the z-direction (perpendicular to the device surface) using electrodes with square outlines formed at the top and bottom of the channel, which is quite useful for observing the motions of cells parallel to their swimming directions. Specifically, z-directional electric field control ensured efficient observation of manipulated cells on the front side (45 cells were captured in a minute in an imaging area of ~160×120 µm), resulting in a reduction of the average time required to capture the images of five Euglena cells swimming continuously along the z-direction by a factor of ~43 compared with the case of no electric field. In addition, the combination of the electrofluidic devices and dynamic imaging enabled observation of the flagella of Euglena cells, revealing that the swimming direction of each Euglena cell under the electric field application was determined by the initial body angle.

17.
Nat Commun ; 7: 12835, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27647423

ABSTRACT

The control of the electronic states of a hydrogen molecular ion by photoexcitation is considerably difficult because it requires multiple sub-10 fs light pulses in the extreme ultraviolet (XUV) wavelength region with a sufficiently high intensity. Here, we demonstrate the control of the dissociation pathway originating from the 2pσu electronic state against that originating from the 2pπu electronic state in a hydrogen molecular ion by using a pair of attosecond pulse trains in the XUV wavelength region with a train-envelope duration of ∼4 fs. The switching time from the peak to the valley in the oscillation caused by the vibrational wavepacket motion in the 1sσg ground electronic state is only 8 fs. This result can be classified as the fastest control, to the best of our knowledge, of a molecular reaction in the simplest molecule on the basis of the XUV-pump and XUV-probe scheme.

18.
Opt Express ; 24(12): 13276-87, 2016 Jun 13.
Article in English | MEDLINE | ID: mdl-27410345

ABSTRACT

We demonstrate a method of stabilizing the carrier-envelope phase (CEP) of low-repetition-rate, high-energy femtosecond laser systems such as TW-PW class lasers. A relatively weak high-repetition-rate (~1 kHz) reference pulse copropagates with a low-repetition-rate (10 Hz) high-energy pulse, which are s- and p-polarized, respectively. Using a Brewster angle window, the reference pulse is separated after the power amplifier and used for feedback to stabilize its CEP. The single-shot CEP of the high-energy pulse is indirectly stabilized to 550 mrad RMS, which is the highest CEP stability ever reported for a low-repetition-rate (10-Hz) high-energy laser system. In this novel method, the feedback frequency of the reference pulse from the front-end preamplifier can be almost preserved. Thus, higher CEP stability can be realized than for lower frequencies. Of course, a reference pulse with an even higher repetition rate (e.g., 10 kHz) can be easily employed to sample and feed back CEP jitter over a broader frequency bandwidth.

19.
Opt Express ; 24(13): 14546-51, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27410607

ABSTRACT

An experimental demonstration of a wide-range narrowband multilayer mirror for selecting a single-order high-harmonic (HH) beam from multiple-order harmonics in the photon energy range between 40 eV and 70 eV was carried out. This extreme ultraviolet (XUV) mirror, based on a pair of Zr and Al0.7Si0.3 multilayers, has a reflectivity of 20-35% and contrast of more than 7 with respect to neighboring HHs at angles of incidence from 10 to 56.9 degrees, assuming HHs pumped at 1.55 eV. Thus, specific single-order harmonic beams can be arbitrarily selected from multiple-order harmonics in this photo energy range. In addition, the dispersion for input pulses of the order of 1 fs is negligible. This simple-to-align optical component is useful for the many various applications in physics, chemistry and biology that use ultrafast monochromatic HH beams.

20.
Opt Express ; 24(13): 14857-70, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27410638

ABSTRACT

We experimentally generate third-harmonic (TH) vortex beams in air by the filamentation of femtosecond pulses produced in a lab-built Ti:sapphire chirped pulse amplifier. The generated TH beam profile is shown to evolve with increasing pump energy. At a sufficiently high pump energy, we observe a conical TH emission of the fundamental vortex and confirm that the conical radiation follows the conservation law for orbital angular momentum. We further investigate the far-field angularly resolved spectra of the TH wave to analyze the conical emission angle. We theoretically verify that the formation of the conical TH vortex results from the phase-matching between the fundamental and TH waves during the filamentation process.

SELECTION OF CITATIONS
SEARCH DETAIL