Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(9): e0292095, 2023.
Article in English | MEDLINE | ID: mdl-37756342

ABSTRACT

European flint landraces are a major class of maize possessing favorable alleles for improving host resistance to Gibberella ear rot (GER) disease which reduces yield and contaminates the grains with mycotoxins. However, the incorporation of these landraces into breeding programs requires a clear understanding of the effectiveness of their introgression into elite materials. We evaluated 15 pre-selected doubled haploid (DH) lines from two European flint landraces, "Kemater Landmais Gelb" (KE) and "Petkuser Ferdinand Rot" (PE), together with two adapted elite flint lines and seven standard lines for GER severity as the main trait, and several adaptation traits (plant height, days to silking, seed-set, plant vigor) across four environments. From this evaluation, three KE DH lines and one PE DH line, with the lowest GER severity, were selected and used as donor parents that were crossed with the two adapted and GER susceptible flint lines (Flint1 and Flint2) to develop six bi-parental DH populations with 34-145 DH lines each. Each DH population was evaluated across two locations. Correlations between GER severity, which was the target trait, and adaptation traits were weak (-0.02 to 0.19). GER severity of lines from PE landrace was on average 2-fold higher than lines from KE landrace, indicating a clear superiority of the KE landrace lines. Mean GER severity of the DH populations was 39.4-61.0% lower than the adapted elite flint lines. All KE-derived DH populations were on average more resistant (27.0-36.7%) than the PE-derived population (51.0%). Highly resistant lines (1.3-5.2%) were found in all of the populations, suggesting that the DH populations can be successfully integrated into elite breeding programs. The findings demonstrate that selected KE landrace lines used as donors were effective in improving GER resistance of the adapted elite inbreds.


Subject(s)
Fusarium , Gibberella , Gibberella/genetics , Zea mays/genetics , Plant Breeding , Alleles , Minerals
3.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36430155

ABSTRACT

Stem rust (SR) and leaf rust (LR) are currently the two most important rust diseases of cultivated rye in Central Europe and resistant cultivars promise to prevent yield losses caused by those pathogens. To secure long-lasting resistance, ideally pyramided monogenic resistances and race-nonspecific resistances are applied. To find respective genes, we screened six breeding populations and one testcross population for resistance to artificially inoculated SR and naturally occurring LR in multi-environmental field trials. Five populations were genotyped with a 10K SNP marker chip and one with DArTseqTM. In total, ten SR-QTLs were found that caused a reduction of 5-17 percentage points in stem coverage with urediniospores. Four QTLs thereof were mapped to positions of already known SR QTLs. An additional gene at the distal end of chromosome 2R, Pgs3.1, that caused a reduction of 40 percentage points SR infection, was validated. One SR-QTL on chromosome 3R, QTL-SR4, was found in three populations linked with the same marker. Further QTLs at similar positions, but from different populations, were also found on chromosomes 1R, 4R, and 6R. For SR, additionally seedling tests were used to separate between adult-plant and all-stage resistances and a statistical method accounting for the ordinal-scaled seedling test data was used to map seedling resistances. However, only Pgs3.1 could be detected based on seedling test data, even though genetic variance was observed in another population, too. For LR, in three of the populations, two new large-effect loci (Pr7 and Pr8) on chromosomes 1R and 2R were mapped that caused 34 and 21 percentage points reduction in leaf area covered with urediniospores and one new QTL on chromosome 1R causing 9 percentage points reduction.


Subject(s)
Basidiomycota , Disease Resistance , Disease Resistance/genetics , Secale/genetics , Plant Diseases/genetics , Triticum/genetics , Plant Breeding , Basidiomycota/genetics , Seedlings/genetics
4.
Front Plant Sci ; 13: 1050891, 2022.
Article in English | MEDLINE | ID: mdl-36388551

ABSTRACT

Fusarium (FER) and Gibberella ear rots (GER) are the two most devastating diseases of maize (Zea mays L.) which reduce yield and affect grain quality worldwide, especially by contamination with mycotoxins. Genetic improvement of host resistance to effectively tackle FER and GER diseases requires the identification of stable quantitative trait loci (QTL) to facilitate the application of genomics-assisted breeding for improving selection efficiency in breeding programs. We applied improved meta-analysis algorithms to re-analyze 224 QTL identified in 15 studies based on dense genome-wide single nucleotide polymorphisms (SNP) in order to identify meta-QTL (MQTL) and colocalized genomic loci for fumonisin (FUM) and deoxynivalenol (DON) accumulation, silk (SR) and kernel (KR) resistances of both FER and GER, kernel dry-down rate (KDD) and husk coverage (HC). A high-resolution genetic consensus map with 36,243 loci was constructed and enabled the projection of 164 of the 224 collected QTL. Candidate genes (CG) mining was performed within the most refined MQTL, and identified CG were cross-validated using publicly available transcriptomic data of maize under Fusarium graminearum infection. The meta-analysis revealed 40 MQTL, of which 29 were associated each with 2-5 FER- and/or GER-related traits. Twenty-eight of the 40 MQTL were common to both FER and GER resistances and 19 MQTL were common to silk and kernel resistances. Fourteen most refined MQTL on chromosomes 1, 2, 3, 4, 7 and 9 harbored a total of 2,272 CG. Cross-validation identified 59 of these CG as responsive to FER and/or GER diseases. MQTL ZmMQTL2.2, ZmMQTL9.2 and ZmMQTL9.4 harbored promising resistance genes, of which GRMZM2G011151 and GRMZM2G093092 were specific to the resistant line for both diseases and encoded "terpene synthase21 (tps21)" and "flavonoid O-methyltransferase2 (fomt2)", respectively. Our findings revealed stable refined MQTL harboring promising candidate genes for use in breeding programs for improving FER and GER resistances with reduced mycotoxin accumulation. These candidate genes can be transferred into elite cultivars by integrating refined MQTL into genomics-assisted backcross breeding strategies.

5.
Theor Appl Genet ; 135(12): 4303-4326, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36152062

ABSTRACT

KEY MESSAGE: FHB resistance shared pleiotropic loci with plant height and anther retention. Genomic prediction allows to select for genomic background reducing FHB susceptibility in the presence of the dwarfing allele Rht-D1b. With the high interest for semi-dwarf cultivars in wheat, finding locally adapted resistance sources against Fusarium head blight (FHB) and FHB-neutral reduced height (Rht) genes is of utmost relevance. In this study, 401 genotypes of European origin without/with dwarfing alleles of Rht-D1 and/or Rht24 were analysed across five environments on FHB severity and the morphological traits such as plant height (PH), anther retention (AR), number of spikelets per ear, ear length and ear density. Data were analysed by combined correlation and path analyses, association mapping and coupling single- and multi-trait genome-wide association studies (ST-GWAS and MT-GWAS, respectively) and genomic prediction (GP). All FHB data were corrected for flowering date or heading stage. High genotypic correlation (rg = 0.74) and direct path effect (0.57) were detected between FHB severity and anther retention (AR). Moderate correlation (rg = - 0.55) was found between FHB severity and plant height (PH) with a high indirect path via AR (- 0.31). Indirect selection for FHB resistance should concentrate on AR and PH. ST-GWAS identified 25 quantitative trait loci (QTL) for FHB severity, PH and AR, while MT-GWAS detected six QTL across chromosomes 2A, 4D, 5A, 6B and 7B conveying pleiotropic effects on the traits. Rht-D1b was associated with high AR and FHB susceptibility. Our study identified a promising positively acting pleiotropic QTL on chromosome 7B which can be utilized to improve FHB resistance while reducing PH and AR. Rht-D1b genotypes having a high resistance genomic background exhibited lower FHB severity and AR. The use of GP for estimating the genomic background was more effective than selection of GWAS-detected markers. We demonstrated that GP has a great potential and should be exploited by selecting for semi-dwarf winter wheat genotypes with higher FHB resistance due to their genomic background.


Subject(s)
Fusarium , Triticum/genetics , Triticum/anatomy & histology , Chromosome Mapping , Genome-Wide Association Study , Plant Diseases/genetics
6.
Plants (Basel) ; 11(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35567115

ABSTRACT

Hybrid rye breeding leads to considerably higher grain yield and a higher revenue to the farmer. The basis of hybrid seed production is the CMS-inducing Pampa (P) cytoplasm derived from an Argentinean landrace and restorer-to-fertility (Rf) genes. European sources show an oligogenic inheritance, with major and minor Rf genes, and mostly result in low-to-moderate pollen-fertility levels. This results in higher susceptibility to ergot (Claviceps purpurea) because rye pollen and ergot spores are in strong competition for the unfertilized stigma. Rf genes from non-adapted Iranian primitive rye and old Argentinean cultivars proved to be most effective. The major Rf gene in these sources was localized on chromosome 4RL, which is also a hotspot of restoration in other Triticeae. Marker-based introgression into elite rye materials led to a yield penalty and taller progenies. The Rfp1 gene of IRAN IX was fine-mapped, and two linked genes of equal effects were detected. Commercial hybrids with this gene showed a similar low ergot infection when compared with population cultivars. The task of the future is to co-adapt these exotic Rfp genes to European elite gene pools by genomic-assisted breeding.

7.
BMC Genomics ; 22(1): 630, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34461830

ABSTRACT

BACKGROUND: Fusarium culmorum is an important pathogen causing head blight of cereals in Europe. This disease is of worldwide importance leading to reduced yield, grain quality, and contamination by mycotoxins. These mycotoxins are harmful for livestock and humans; therefore, many countries have strict regulatory limits for raw materials and processed food. Extensive genetic diversity is described among field populations of F. culmorum isolates for aggressiveness and production of the trichothecene mycotoxin deoxynivalenol (DON). However, the causes for this quantitative variation are not clear, yet. We analyzed 92 isolates sampled from different field populations in Germany, Russia, and Syria together with an international collection for aggressiveness and DON production in replicated field experiments at two locations in two years with two hosts, wheat and rye. The 30x coverage whole-genome resequencing of all isolates resulted in the identification of 130,389 high quality single nucleotide polymorphisms (SNPs) that were used for the first genome-wide association study in this phytopathogenic fungus. RESULTS: In wheat, 20 and 27 SNPs were detected for aggressiveness and DON content, respectively, of which 10 overlapped. Additionally, two different SNPs were significantly associated with aggressiveness in rye that were among those SNPs being associated with DON production in wheat. Most of the SNPs explained only a small proportion of genotypic variance (pG), however, four SNPs were associated with major quantitative trait loci (QTLs) with pG ranging from 12 to 48%. The QTL with the highest pG was involved in DON production and associated with a SNP most probably located within the Tri4 gene. CONCLUSIONS: The diversity of 92 isolates of F. culmorum were captured using a heuristic approach. Key phenotypic traits, SNPs, and candidate genes underlying aggressiveness and DON production were identified. Clearly, many QTLs are responsible for aggressiveness and DON content in wheat, both traits following a quantitative inheritance. Several SNPs involved in DON metabolism, among them the Tri4 gene of the trichothecene pathway, were inferred as important source of variation in fungal aggressiveness. Using this information underlying the phenotypic variation will be of paramount importance in evaluating strategies for successful resistance breeding.


Subject(s)
Fusarium , Fusarium/genetics , Genome-Wide Association Study , Humans , Plant Breeding , Plant Diseases/genetics , Secale/genetics , Trichothecenes , Triticum/genetics
8.
Plants (Basel) ; 10(6)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198672

ABSTRACT

Perenniality, the ability of plants to regrow after seed set, could be introgressed into cultivated rye by crossing with the wild relative and perennial Secale strictum. However, studies in the past showed that Secale cereale × Secale strictum-derived cultivars were also characterized by reduced fertility what was related to so called chromosomal multivalents, bulks of chromosomes that paired together in metaphase I of pollen mother cells instead of only two chromosomes (bivalents). Those multivalents could be caused by ancient translocations that occurred between both species. Genetic studies on perennial rye are quite old and especially the advent of molecular markers and genome sequencing paved the way for new insights and more comprehensive studies. After a brief review of the past research, we used a basic QTL mapping approach to analyze the genetic status of perennial rye. We could show that for the trait perennation 0.74 of the genetic variance in our population was explained by additively inherited QTLs on chromosome 2R, 3R, 4R, 5R and 7R. Fertility on the other hand was with 0.64 of explained genetic variance mainly attributed to a locus on chromosome 5R, what was most probably the self-incompatibility locus S5. Additionally, we could trace the Z locus on chromosome 2R by high segregation distortion of markers. Indications for chromosomal co-segregation, like multivalents, could not be found. This study opens new possibilities to use perennial rye as genetic resource and for alternative breeding methods, as well as a valuable resource for comparative studies of perennation across different species.

9.
Theor Appl Genet ; 134(7): 1989-2003, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33688982

ABSTRACT

KEY MESSAGE: Individual stem rust resistance genes could be directly mapped within self-incompatible rye populations. Genetic resources of rye (Secale cereale L.) are cross-pollinating populations that can be highly diverse and are naturally segregating. In this study, we show that this segregation could be used for mapping stem rust resistance. Populations of pre-selected donors from the Russian Federation, the USA and Austria were tested on a single-plant basis for stem rust resistance by a leaf-segment test with three rust isolates. Seventy-four plants per population were genotyped with a 10 K-SNP chip. Using cumulative logit models, significant associations between the ordinal infection score and the marker alleles could be found. Three different loci (Pgs1, Pgs2, Pgs3) in three populations were highly significant, and resistance-linked markers could be validated with field experiments of an independent seed sample from the original population and were used to fix two populations for resistance. We showed that it is possible to map monogenically inherited seedling resistance genes directly in genetic resources, thus providing a competitive alternative to linkage mapping approaches that require a tedious and time-consuming inbreeding over several generations.


Subject(s)
Basidiomycota/pathogenicity , Chromosome Mapping , Disease Resistance/genetics , Plant Diseases/genetics , Secale/genetics , Alleles , Genetic Linkage , Genotype , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Secale/microbiology
10.
Theor Appl Genet ; 134(6): 1771-1785, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33715023

ABSTRACT

Wheat productivity is threatened by global climate change. In several parts of NW Europe it will get warmer and dryer during the main crop growing period. The resulting likely lower realized on-farm crop yields must be kept by breeding for resistance against already existing and emerging diseases among other measures. Multi-disease resistance will get especially crucial. In this review, we focus on disease resistance breeding approaches in wheat, especially related to rust diseases and Fusarium head blight, because simulation studies of potential future disease risk have shown that these diseases will be increasingly relevant in the future. The long-term changes in disease occurrence must inevitably lead to adjustments of future resistance breeding strategies, whereby stability and durability of disease resistance under heat and water stress will be important in the future. In general, it would be important to focus on non-temperature sensitive resistance genes/QTLs. To conclude, research on the effects of heat and drought stress on disease resistance reactions must be given special attention in the future.


Subject(s)
Climate Change , Disease Resistance/genetics , Plant Diseases/genetics , Triticum/genetics , Droughts , Edible Grain/genetics , Edible Grain/microbiology , Europe , Fusarium , Hot Temperature , Plant Breeding , Plant Diseases/microbiology , Quantitative Trait Loci , Stress, Physiological , Triticum/microbiology
11.
Theor Appl Genet ; 134(5): 1409-1422, 2021 May.
Article in English | MEDLINE | ID: mdl-33630103

ABSTRACT

KEY MESSAGE: Hyperspectral data is a promising complement to genomic data to predict biomass under scenarios of low genetic relatedness. Sufficient environmental connectivity between data used for model training and validation is required. The demand for sustainable sources of biomass is increasing worldwide. The early prediction of biomass via indirect selection of dry matter yield (DMY) based on hyperspectral and/or genomic prediction is crucial to affordably untap the potential of winter rye (Secale cereale L.) as a dual-purpose crop. However, this estimation involves multiple genetic backgrounds and genetic relatedness is a crucial factor in genomic selection (GS). To assess the prospect of prediction using reflectance data as a suitable complement to GS for biomass breeding, the influence of trait heritability ([Formula: see text]) and genetic relatedness were compared. Models were based on genomic (GBLUP) and hyperspectral reflectance-derived (HBLUP) relationship matrices to predict DMY and other biomass-related traits such as dry matter content (DMC) and fresh matter yield (FMY). For this, 270 elite rye lines from nine interconnected bi-parental families were genotyped using a 10 k-SNP array and phenotyped as testcrosses at four locations in two years (eight environments). From 400 discrete narrow bands (410 nm-993 nm) collected by an uncrewed aerial vehicle (UAV) on two dates in each environment, 32 hyperspectral bands previously selected by Lasso were incorporated into a prediction model. HBLUP showed higher prediction abilities (0.41 - 0.61) than GBLUP (0.14 - 0.28) under a decreased genetic relationship, especially for mid-heritable traits (FMY and DMY), suggesting that HBLUP is much less affected by relatedness and [Formula: see text]. However, the predictive power of both models was largely affected by environmental variances. Prediction abilities for DMY were further enhanced (up to 20%) by integrating both matrices and plant height into a bivariate model. Thus, data derived from high-throughput phenotyping emerges as a suitable strategy to efficiently leverage selection gains in biomass rye breeding; however, sufficient environmental connectivity is needed.


Subject(s)
Biomass , Genomics/methods , Hyperspectral Imaging/methods , Plant Breeding/methods , Quantitative Trait Loci , Secale/physiology , Selection, Genetic , Gene-Environment Interaction , Genetics, Population , Genome, Plant , Phenotype , Secale/genetics
12.
Theor Appl Genet ; 134(3): 793-805, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33274402

ABSTRACT

KEY MESSAGE: High genetic variation in two European maize landraces can be harnessed to improve Gibberella ear rot resistance by integrated genomic tools. Fusarium graminearum (Fg) causes Gibberella ear rot (GER) in maize leading to yield reduction and contamination of grains with several mycotoxins. This study aimed to elucidate the molecular basis of GER resistance among 500 doubled haploid lines derived from two European maize landraces, "Kemater Landmais Gelb" (KE) and "Petkuser Ferdinand Rot" (PE). The two landraces were analyzed individually using genome-wide association studies and genomic selection (GS). The lines were genotyped with a 600-k maize array and phenotyped for GER severity, days to silking, plant height, and seed-set in four environments using artificial infection with a highly aggressive Fg isolate. High genotypic variances and broad-sense heritabilities were found for all traits. Genotype-environment interaction was important throughout. The phenotypic (r) and genotypic ([Formula: see text]) correlations between GER severity and three agronomic traits were low (r = - 0.27 to 0.20; [Formula: see text]= - 0.32 to 0.22). For GER severity, eight QTLs were detected in KE jointly explaining 34% of the genetic variance. In PE, no significant QTLs for GER severity were detected. No common QTLs were found between GER severity and the three agronomic traits. The mean prediction accuracies ([Formula: see text]) of weighted GS (wRR-BLUP) were higher than [Formula: see text] of marker-assisted selection (MAS) and unweighted GS (RR-BLUP) for GER severity. Using KE as the training set and PE as the validation set resulted in very low [Formula: see text] that could be improved by using fixed marker effects in the GS model.


Subject(s)
Chromosomes, Plant/genetics , Disease Resistance/genetics , Genetic Variation , Gibberella/physiology , Plant Diseases/genetics , Zea mays/genetics , Chromosome Mapping , Disease Resistance/immunology , Genetic Markers , Phenotype , Plant Diseases/microbiology , Quantitative Trait Loci , Zea mays/immunology , Zea mays/microbiology
13.
Theor Appl Genet ; 134(2): 419-433, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33221940

ABSTRACT

KEY MESSAGE: Snow mold resistance is a complex quantitative trait highly affected by environmental conditions during winter that must be addressed by resistance breeding. Snow mold resistance in winter cereals is an important trait for many countries in the Northern Hemisphere. The disease is caused by at least four complexes of soilborne fungi and oomycetes of which Microdochium nivale and M. majus are among the most common pathogens. They have a broad host range covering all winter and spring cereals and can basically affect all plant growth stages and organs. Their attack leads to a low germination rate, and/or pre- and post-emergence death of seedlings after winter and, depending on largely unknown environmental conditions, also to foot rot, leaf blight, and head blight. Resistance in winter wheat and triticale is governed by a multitude of quantitative trait loci (QTL) with mainly additive effects highly affected by genotype × environment interaction. Snow mold resistance interacts with winter hardiness in a complex way leading to a co-localization of resistance QTLs with QTLs/genes for freezing tolerance. In practical breeding, a multistep procedure is necessary with (1) freezing tolerance tests, (2) climate chamber tests for snow mold resistance, and (3) field tests in locations with and without regularly occurring snow cover. In the future, resistance sources should be genetically characterized also in rye by QTL mapping or genome-wide association studies. The development of genomic selection procedures should be prioritized in breeding research.


Subject(s)
Disease Resistance/immunology , Edible Grain/microbiology , Fungi/physiology , Plant Breeding/methods , Plant Diseases/immunology , Plant Diseases/microbiology , Stress, Physiological , Disease Resistance/genetics , Edible Grain/growth & development , Edible Grain/immunology , Genes, Plant , Genome-Wide Association Study , Quantitative Trait Loci
14.
Theor Appl Genet ; 134(1): 63-79, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32995900

ABSTRACT

KEY MESSAGE: NCLB is the most devastating leaf disease in European maize, and the introduction of Brazilian resistance donors can efficiently increase the resistance levels of European maize germplasm. Northern corn leaf blight (NCLB) is one of the most devastating leaf pathogens in maize (Zea mays L.). Maize cultivars need to be equipped with broad and stable NCLB resistance to cope with production intensification and climate change. Brazilian germplasm is a great source to increase low NCLB resistance levels in European materials, but little is known about their effect in European environments. To investigate the usefulness of Brazilian germplasm as NCLB resistance donors, we conducted multi-parent QTL mapping, evaluated the potential of marker-assisted selection as well as genome-wide selection of 742 F1-derived DH lines. The line per se performance was evaluated in one location in Brazil and six location-by-year combinations (= environments) in Europe, while testcrosses were assessed in two locations in Brazil and further 10 environments in Europe. Jointly, we identified 17 QTL for NCLB resistance explaining 3.57-30.98% of the genotypic variance each. Two of these QTL were detected in both Brazilian and European environments indicating the stability of these QTL in contrasting ecosystems. We observed moderate to high genomic prediction accuracies between 0.58 and 0.83 depending on population and continent. Collectively, our study illustrates the potential use of tropical resistance sources to increase NCLB resistance level in applied European maize breeding programs.


Subject(s)
Ascomycota/pathogenicity , Disease Resistance/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Zea mays/genetics , Brazil , Chromosome Mapping , Crosses, Genetic , Ecosystem , Europe , Genotype , Plant Breeding , Plant Diseases/microbiology , Zea mays/microbiology
15.
Int J Mol Sci ; 21(24)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352763

ABSTRACT

Generating genomics-driven knowledge opens a way to accelerate the resistance breeding process by family or population mapping and genomic selection. Important prerequisites are large populations that are genomically analyzed by medium- to high-density marker arrays and extensive phenotyping across locations and years of the same populations. The latter is important to train a genomic model that is used to predict genomic estimated breeding values of phenotypically untested genotypes. After reviewing the specific features of quantitative resistances and the basic genomic techniques, the possibilities for genomics-assisted breeding are evaluated for six pathosystems with hemi-biotrophic fungi: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch (STB) and Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot (FER), maize/Northern corn leaf blight (NCLB). Typically, all quantitative disease resistances are caused by hundreds of QTL scattered across the whole genome, but often available in hotspots as exemplified for NCLB resistance in maize. Because all crops are suffering from many diseases, multi-disease resistance (MDR) is an attractive aim that can be selected by specific MDR QTL. Finally, the integration of genomic data in the breeding process for introgression of genetic resources and for the improvement within elite materials is discussed.


Subject(s)
Disease Resistance/genetics , Edible Grain/genetics , Genomics/methods , Host-Pathogen Interactions/genetics , Plant Breeding/methods , Plant Diseases/genetics , Zea mays/genetics , Edible Grain/growth & development , Edible Grain/microbiology , Plant Diseases/microbiology , Zea mays/growth & development , Zea mays/microbiology
16.
Toxins (Basel) ; 12(11)2020 10 26.
Article in English | MEDLINE | ID: mdl-33114663

ABSTRACT

Ergot caused by Claviceps purpurea is a problem for food and feed security in rye due to the occurrence of toxic ergot alkaloids (EAs). For grain elevators and breeders, a quick, easy-to-handle, and cheap screening assay would have a high economic impact. The study was performed to reveal (1) the covariation of ergot severity (= percentage of sclerotia in harvested grain) and the content of 12 EAs determined by high performance liquid chromatography (HPLC) and (2) the covariation between these traits and results of one commercial enzyme linked immunosorbent assays (ELISA). In total, 372 winter rye samples consisting of a diverse set of genotypes, locations from Germany, Austria, and Poland over two years, and three isolates were analyzed. Ergocornine and α-ergocryptine were detected as major EAs. Ergocristinine occurred as a minor component. Claviceps isolates from different countries showed a similar EA spectrum, but different quantities of individual EAs. A moderate, positive covariation between ergot severity and EA content determined by HPLC was observed across two years (r = 0.53, p < 0.01), but large deviation from the regression was detected. ELISA values did neither correlate with the HPLC results nor with ergot severity. In conclusion, a reliable prediction of the EA content based on ergot severity is, at present, not possible.


Subject(s)
Claviceps/isolation & purification , Edible Grain/microbiology , Ergot Alkaloids/analysis , Food Contamination/analysis , Secale/microbiology , Austria , Chromatography, High Pressure Liquid , Claviceps/genetics , Enzyme-Linked Immunosorbent Assay , Genotype , Germany , Poland
17.
Plants (Basel) ; 9(9)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872389

ABSTRACT

Wheat production can be severely damaged by endemic and invasive insect pests. Here, we investigated resistance to cereal leaf beetle in a panel of 876 winter wheat cultivars, and dissected the genetic architecture underlying this insect resistance by association mapping. We observed an effect of heading date on cereal leaf beetle infestation, with earlier heading cultivars being more heavily infested. Flag leaf glaucousness was also found to be correlated with resistance. In line with the strong effect of heading time, we identified Ppd-D1 as a major quantitative trait locus (QTL), explaining 35% of the genotypic variance of cereal leaf beetle resistance. The other identified putative QTL explained much less of the genotypic variance, suggesting a genetic architecture with many small-effect QTL, which was corroborated by a genomic prediction approach. Collectively, our results add to our understanding of the genetic control underlying insect resistances in small-grain cereals.

18.
Theor Appl Genet ; 133(11): 3001-3015, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32681289

ABSTRACT

KEY MESSAGE: Hyperspectral and genomic data are effective predictors of biomass yield in winter rye. Variable selection procedures can improve the informativeness of reflectance data. Integrating cutting-edge technologies is imperative to sustainably breed crops for a growing global population. To predict dry matter yield (DMY) in winter rye (Secale cereale L.), we tested single-kernel models based on genomic (GBLUP) and hyperspectral reflectance-derived (HBLUP) relationship matrices, a multi-kernel model combining both matrices and a bivariate model fitted with plant height as a secondary trait. In total, 274 elite rye lines were genotyped using a 10 k-SNP array and phenotyped as testcrosses for DMY and plant height at four locations in Germany in two years (eight environments). Spectral data consisted of 400 discrete narrow bands ranging between 410 and 993 nm collected by an unmanned aerial vehicle (UAV) on two dates on each environment. To reduce data dimensionality, variable selection of bands was performed, resulting in the least absolute shrinkage and selection operator (Lasso) as the best method in terms of predictive abilities. The mean heritability of reflectance data was moderate ([Formula: see text] = 0.72) and highly variable across the spectrum. Correlations between DMY and single bands were generally significant (p < 0.05) but low (≤ 0.29). Across environments and training set (TRN) sizes, the bivariate model showed the highest prediction abilities (0.56-0.75), followed by the multi-kernel (0.45-0.71) and single-kernel (0.33-0.61) models. With reduced TRN, HBLUP performed better than GBLUP. The HBLUP model fitted with a set of selected bands was preferred. Within and across environments, prediction abilities increased with larger TRN. Our results suggest that in the era of digital breeding, the integration of high-throughput phenotyping and genomic selection is a promising strategy to achieve superior selection gains in hybrid rye.


Subject(s)
Models, Genetic , Secale/growth & development , Secale/genetics , Biomass , Crosses, Genetic , Genotype , Germany , Phenotype , Plant Breeding , Spectrum Analysis
19.
Front Plant Sci ; 11: 667, 2020.
Article in English | MEDLINE | ID: mdl-32528509

ABSTRACT

Rye stem rust caused by Puccinia graminis f. sp. secalis can be found in all European rye growing regions. When the summers are warm and dry, the disease can cause severe yield losses over large areas. To date only little research was done in Europe to trigger resistance breeding. To our knowledge, all varieties currently registered in Germany are susceptible. In this study, three biparental populations of inbred lines and one testcross population developed for mapping resistance were investigated. Over 2 years, 68-70 genotypes per population were tested, each in three locations. Combining the phenotypic data with genotyping results of a custom 10k Infinium iSelect single nucleotide polymorphism (SNP) array, we identified both quantitatively inherited adult plant resistance and monogenic all-stage resistance. A single resistance gene, tentatively named Pgs1, located at the distal end of chromosome 7R, could be identified in two independently developed populations. With high probability, it is closely linked to a nucleotide-binding leucine-rich repeat (NB-LRR) resistance gene homolog. A marker for a competitive allele-specific polymerase chain reaction (KASP) genotyping assay was designed that could explain 73 and 97% of the genetic variance in each of both populations, respectively. Additional investigation of naturally occurring rye leaf rust (caused by Puccinia recondita ROEBERGE) revealed a gene complex on chromosome 7R. The gene Pgs1 and further identified quantitative trait loci (QTL) have high potential to be used for breeding stem rust resistant rye.

20.
Theor Appl Genet ; 133(2): 419-431, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31720693

ABSTRACT

KEY MESSAGE: About 10% of cultivars possessed superior resistance to four fungal diseases and association mapping for multiple disease resistance identified loci which are not detected by analyzing individual disease resistances. Multiple disease resistance (MDR) aims for cultivars that are resistant to more than one disease which is an important prerequisite for the registration of commercial cultivars. We analyzed a European winter wheat diversity panel of 158 old and new cultivars for four diseases by natural (powdery mildew) and artificial inoculation (yellow rust, stem rust, Fusarium head blight) observed on the same plot in a multilocation trial. Genotypic analyses were based on 21,543 genotype-by-sequencing markers. By association mapping, eight to 18 quantitative-trait loci (QTL) were detected for individual disease resistances, explaining in total 67-90% of the total genotypic variation. For MDR, nine QTL could be found explaining 62% of the total genotypic variation. Only three of them were also found as QTL for a single disease resistance illustrating that mapping of MDR-associated QTL can be regarded as a complementary approach. The high prediction ability obtained for MDR (> 0.9) implies that genomic prediction could be used in future, thereby eliminating the necessity to separately screen large numbers of lines in breeding programs for several diseases.


Subject(s)
Disease Resistance/genetics , Plant Diseases/genetics , Triticum/genetics , Triticum/microbiology , Ascomycota/pathogenicity , Basidiomycota/pathogenicity , Disease Resistance/physiology , Fusarium/pathogenicity , Genes, Plant , Genome-Wide Association Study , Genotype , Phenotype , Plant Diseases/microbiology , Quantitative Trait Loci , Triticum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...