Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37177340

ABSTRACT

Pine seed shells and yerba mate are common wastes leftover from the food and beverage industry. This study presents the development of rigid polyurethane foams (RPUFs) filled with pine seed shells and yerba mate at 5, 10 and 15 wt%. The fillers were characterized for chemical properties using bench chemistry analyses, and the RPUFs were investigated in terms of chemical, morphological, mechanical, thermal and colorimetric characteristics. The main results indicated that yerba mate showed good compatibility with the polyurethane system, probably because its available hydroxyl groups reacted with isocyanate groups to form urethane bonds, producing increases in mechanical and thermal properties. However, pine seed shell did not appear to be compatible. Anisotropy increased slightly, as there was an increase in the percentage of reinforcement. The mechanical properties of the yerba mate reinforced foams proved stable, while there was a loss of overall up to ~50% for all mechanical properties in those reinforced with pine seed shell. Thermal properties were improved up to ~40% for the yerba mate reinforced foams, while those reinforced with pine nuts were stable. It was possible to observe a decrease in the glass transition temperature (Tg) of ~-5 °C for the yerba mate reinforced foams and ~-14 °C for the pine seed shell reinforced ones.

2.
Int J Mol Sci ; 22(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34639165

ABSTRACT

In this study, polyurethane (PU) composite foams were modified with 2 wt.% of vermiculite fillers, which were themselves modified with casein, chitosan, and potato protein. The impact of the fillers on selected properties of the obtained composites, including their rheological (foaming behavior, dynamic viscosity), thermal (temperature of thermal decomposition stages), flame-retardant (e.g., limiting oxygen index, ignition time, heat peak release), and mechanical properties (toughness, compressive strength (parallel and perpendicular), flexural strength) were investigated. Among all the modified polyurethane composites, the greatest improvement was noticed in the PU foams filled with vermiculite modified with casein and chitosan. For example, after the addition of modified vermiculite fillers, the foams' compressive strength was enhanced by ~6-18%, their flexural strength by ~2-10%, and their toughness by ~1-5%. Most importantly, the polyurethane composites filled with vermiculite filler and modified vermiculite fillers exhibited improved flame resistance characteristics (the value of total smoke release was reduced by ~34%, the value of peak heat release was reduced by ~25%).


Subject(s)
Aluminum Silicates/chemistry , Caseins/chemistry , Chitosan/chemistry , Flame Retardants/analysis , Plant Proteins/chemistry , Polyurethanes/chemistry , Solanum tuberosum/chemistry , Compressive Strength , Viscosity
3.
Materials (Basel) ; 14(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209539

ABSTRACT

Polyurethane (PUR) composites reinforced with 1, 2, and 5 wt.% of apricot filler modified with casein were synthesized in the following study. The impact of 1, 2, and 5 wt.% of casein/apricot filler on the cellular structure and physico-mechanical performances of reinforced PUR composites were determined. It was found that the incorporation of 1 and 2 wt.% of casein/apricot filler resulted in the production of PUR composites with improved selected physical, thermal, and mechanical properties, while the addition of 5 wt.% of casein/apricot filler led to some deterioration of their physico-mechanical performance. The best results were obtained for PUR composites reinforced with 2 wt.% of casein/apricot filler. Those composites were characterized by a uniform structure and a high content of closed cells. Compared with the reference foam, the incorporation of 2 wt.% of casein/apricot filler resulted in improvement in compressive strength, flexural strength, impact strength, and dynamic mechanical properties-such as glass transition temperature and storage modulus. Most importantly, PUR composites showed better fire resistance and thermal stability due to the good thermal performance of casein. The main aim of this article is to determine the influence of the natural combination of the apricot filler and casein on the mechanical properties and flammability of the obtained composites.

4.
Molecules ; 26(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34210013

ABSTRACT

The subject of the research was the production of silsesquioxane modified rigid polyurethane (PUR) foams (POSS-Cl) with chlorine functional groups (chlorobenzyl, chloropropyl, chlorobenzylethyl) characterized by reduced flammability. The foams were prepared in a one-step additive polymerization reaction of isocyanates with polyols, and the POSS modifier was added to the reaction system in an amount of 2 wt.% polyol. The influence of POSS was analyzed by performing a series of tests, such as determination of the kinetics of foam growth, determination of apparent density, and structure analysis. Compressive strength, three-point bending strength, hardness, and shape stability at reduced and elevated temperatures were tested, and the hydrophobicity of the surface was determined. The most important measurement was the determination of the thermal stability (TGA) and the flammability of the modified systems using a cone calorimeter. The obtained results, after comparing with the results for unmodified foam, showed a large influence of POSS modifiers on the functional properties, especially thermal and fire-retardant, of the obtained PUR-POSS-Cl systems.

5.
Int J Mol Sci ; 22(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34298923

ABSTRACT

In the following study, polyurethane (PUR) composites were modified with 2 wt.% of walnut shell filler modified with selected mineral compounds-perlite, montmorillonite, and halloysite. The impact of modified walnut shell fillers on selected properties of PUR composites, such as rheological properties (dynamic viscosity, foaming behavior), mechanical properties (compressive strength, flexural strength, impact strength), dynamic-mechanical behavior (glass transition temperature, storage modulus), insulation properties (thermal conductivity), thermal characteristic (temperature of thermal decomposition stages), and flame retardant properties (e.g., ignition time, limiting oxygen index, heat peak release) was investigated. Among all modified types of PUR composites, the greatest improvement was observed for PUR composites filled with walnut shell filler functionalized with halloysite. For example, on the addition of such modified walnut shell filler, the compressive strength was enhanced by ~13%, flexural strength by ~12%, and impact strength by ~14%. Due to the functionalization of walnut shell filler with thermally stable flame retardant compounds, such modified PUR composites were characterized by higher temperatures of thermal decomposition. Most importantly, PUR composites filled with flame retardant compounds exhibited improved flame resistance characteristics-in all cases, the value of peak heat release was reduced by ~12%, while the value of total smoke release was reduced by ~23%.


Subject(s)
Aluminum Oxide/chemistry , Bentonite/chemistry , Clay/chemistry , Composite Resins/chemistry , Juglans/chemistry , Polyurethanes/chemistry , Silicon Dioxide/chemistry , Compressive Strength , Glass/chemistry , Materials Testing/methods , Temperature , Viscosity
6.
Int J Mol Sci ; 22(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946213

ABSTRACT

In the following study, ground plum stones and silanized ground plum stones were used as natural fillers for novel polyurethane (PUR) composite foams. The impact of 1, 2, and 5 wt.% of fillers on the cellular structure, foaming parameters, and mechanical, thermomechanical, and thermal properties of produced foams were assessed. The results showed that the silanization process leads to acquiring fillers with a smoother surface compared to unmodified filler. The results also showed that the morphology of the obtained materials is affected by the type and content of filler. Moreover, the modified PUR foams showed improved properties. For example, compared with the reference foam (PUR_REF), the foam with the addition of 1 wt.% of unmodified plum filler showed better mechanical properties, such as higher compressive strength (~8% improvement) and better flexural strength (~6% improvement). The addition of silanized plum filler improved the thermal stability and hydrophobic character of PUR foams. This work shows the relationship between the mechanical, thermal, and application properties of the obtained PUR composites depending on the modification of the filler used during synthesis.


Subject(s)
Polyurethanes/chemistry , Prunus domestica/chemistry , Silanes/chemistry , Chemistry Techniques, Synthetic , Compressive Strength , Construction Materials , Materials Testing , Polyurethanes/chemical synthesis , Porosity , Rheology , Silanes/chemical synthesis
7.
Int J Mol Sci ; 22(7)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916847

ABSTRACT

Rigid polyurethane (PUR) foams reinforced with 1, 2, and 5 wt.% of salvia filler (SO filler) and montmorillonite-modified salvia filler (MMT-modified SO filler) were produced in the following study. The impact of 1, 2, and 5 wt.% of SO filler and MMT-modified SO filler on the morphological, chemical, and mechanical properties of PUR composites were examined. In both cases, the addition of 1 and 2 wt.% of SO fillers resulted in the synthesis of PUR composites with improved physicomechanical properties, while the addition of 5 wt.% of SO fillers resulted in the formation of PUR composites with a less uniform structure and, therefore, some deterioration in their physicomechanical performances. Moreover, the results showed that the modification of SO filler with MMT improved the interphase compatibility between filler surface and PUR matrix. Therefore, such reinforced PUR composites were characterized by a well-developed closed-cell structure and improved mechanical, thermal, and flame-retardant performances. For example, when compared with reference foam, the addition of 2 wt.% of MMT-modified SO filler resulted in the formation of PUR composites with greater mechanical properties (compressive strength, flexural strength) and improved dynamic-mechanical properties (storage modulus). The PUR composites were characterized by better thermal stability as well as improved flame retardancy-e.g., decreased peak rate of heat release (pHRR), reduced total smoke release (TSR), and increased limiting oxygen index (LOI).


Subject(s)
Bentonite/chemistry , Composite Resins , Polyurethanes/chemistry , Salvia officinalis/chemistry , Composite Resins/chemical synthesis , Composite Resins/chemistry
8.
Materials (Basel) ; 14(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467655

ABSTRACT

Polyurethane (PUR) composites were modified with 2 wt.% of lavender fillers functionalized with kaolinite (K) and hydroxyapatite (HA). The impact of lavender fillers on selected properties of PUR composites, such as rheological properties (dynamic viscosity, foaming behavior), mechanical properties (compressive strength, flexural strength, impact strength), insulation properties (thermal conductivity), thermal characteristic (temperature of thermal decomposition stages), flame retardancy (e.g., ignition time, limiting oxygen index, heat peak release) and performance properties (water uptake, contact angle) was investigated. Among all modified types of PUR composites, the greatest improvement was observed for PUR composites filled with lavender fillers functionalized with kaolinite and hydroxyapatite. For example, on the addition of functionalized lavender fillers, the compressive strength was enhanced by ~16-18%, flexural strength by ~9-12%, and impact strength by ~7%. Due to the functionalization of lavender filler with thermally stable flame retardant compounds, such modified PUR composites were characterized by higher temperatures of thermal decomposition. Most importantly, PUR composites filled with flame retardant compounds exhibited improved flame resistance characteristics-in both cases, the value of peak heat release was reduced by ~50%, while the value of total smoke release was reduced by ~30%.

SELECTION OF CITATIONS
SEARCH DETAIL
...