Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 20042, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36414651

ABSTRACT

A damping model is developed based on the mechanism of interfacial interaction in nanoscale particle reinforced composites. The model includes the elasticity of the materials and the effects of interfacial adhesion hysteresis. Specific results are given for the case of bio-based PA610 polyamide reinforced by nanocrystalline cellulose (CNC), based on a previous study that showed this composite possesses very high damping. The presence of hydrogen bonding at the interface between the particle and matrix and the large interfacial area due to the filler's nano size are shown to be the main causes of the high damping enhancement. The influence of other parameters, such as interfacial distance and stiffness of the matrix materials are also discussed. The modeling work can be used as a guide in designing composites with good damping properties.


Subject(s)
Cellulose , Nylons , Surface Tension , Elasticity
2.
Compos B Eng ; 242: 110060, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35754456

ABSTRACT

The transmission of the SARS-CoV-2 coronavirus has been shown through droplets generated by infected people when coughing, sneezing, or talking in close contact. These droplets either reach the next person directly or land on nearby surfaces. The objective of this study is to develop a novel, durable, and effective disinfecting antimicrobial (antiviral, antibacterial, and antifungal) styrene-ethylene/butylene-styrene (SEBS) based thermoplastic elastomers (TPE). TPE incorporated with six different formulations was investigated for mechanical and antiviral performance. The formulations consist of a combination of zinc pyrithione (ZnPT), sodium pentaborate pentahydrate (NaB), disodium octaborate tetrahydrate (DOT), and chlorhexidine (CHX). ZnPT and DOT incorporated TPE showed a reduction of microbes such as bacteria by up to 99.99%, deactivated Adenovirus, Poliovirus, Norovirus, and reduced a strain of the coronavirus family by 99.95% in 60 min on TPE samples. Control samples had higher tensile strengths among all formulations and tensile strength decreased by around 14%, 21% and 27% for ZnPT and DOT combinations compared to control samples. The elongation at break decreased by around 7%, 9% and 12% with ZnPT and DOT combinations, where it reached minimum values of 720%, 702% and 684%, respectively. The 100% Modulus and 300% Modulus slightly increased with ZnPT and NaB combination (reaching values from 1.6 to 1.9 MPa and 2.6-2.9 MPa respectively) in comparison with control samples. The MFI also decreased with antimicrobial and antiviral additives (decreasing values from 64.8 to 43.3 g/10 min). ZnPT and NaB combination showed the lowest MFI (43.3 g/10 min) and reduced the MFI of control sample by around 33%. TPE samples containing ZnPT and DOT combination showed biocidal activity against the microorganisms tested and can be used to develop antimicrobial products for multiple touchpoints within a vehicle and micro-mobility.

3.
Polymers (Basel) ; 13(17)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34503044

ABSTRACT

This research investigated a feasible approach to fabricating electrically conductive knitted fabrics using previously wet-spun wool/polyacrylonitrile (PAN) composite fibre. In the production of the composite fibre, waste wool fibres and PAN were used, whereby both the control PAN (100% PAN) and wool/PAN composite fibres (25% wool) were knitted into fabrics. The knitted fabrics were coated with graphene oxide (GO) using the brushing and drying technique and then chemically reduced using hydrazine to introduce the electrical conductivity. The morphological study showed the presence of GO sheets wrinkles on the coated fabrics and their absence on reduced fabrics, which supports successful coating and a reduction of GO. This was further confirmed by the colour change properties of the fabrics. The colour strength (K/S) of the reduced control PAN and wool/PAN fabrics increased by ~410% and ~270%, and the lightness (L*) decreased ~65% and ~71%, respectively, compared to their pristine fabrics. The Fourier transform infrared spectroscopy showed the presence and absence of the GO functional groups along with the PAN and amide groups in the GO-coated and reduced fabrics. Similarly, the X-ray diffraction analysis exhibited a typical 2θ peak at 10° that represents the existence of GO, which was demolished after the reduction process. Moreover, the wool/PAN/reduced GO knitted fabrics showed higher electrical conductivity (~1.67 S/cm) compared to the control PAN/reduced GO knitted fabrics (~0.35 S/cm). This study shows the potential of fabricating electrically conductive fabrics using waste wool fibres and graphene that can be used in different application fields.

4.
Sci Rep ; 11(1): 12068, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103621

ABSTRACT

This work aims to evaluate the potential of using textile waste in smart textile applications in the form of a hybrid fibre with electrical properties. The bio-based electrically conductive fibres were fabricated from waste wool and polyacrylonitrile (PAN) via wet spinning with different wool content. The control PAN and hybrid fibre produced with the highest amount of wool content (25% w/v) were coated with graphene oxide (GO) using the "brushing and drying" technique. The GO nanosheets coated control PAN and wool/PAN hybrid fibres were chemically reduced through hydrazine vapour exposure. The Fourier transform infrared spectroscopy showed the presence of both protein and nitrile peaks in the wool/PAN hybrid fibres, although the amide I and amide A groups had disappeared, due to the dissolution of wool. The morphological and structural analysis revealed effective coating and reduction of the fibres through GO nanosheets and hydrazine, respectively. The hybrid fibre showed higher electrical conductivity (~ 180 S/cm) compared to the control PAN fibres (~ 95 S/cm), confirming an effective bonding between the hydroxyl and carboxylic groups of the GO sheets and the amino groups of wool evidenced by chemical analysis. Hence, the graphene oxide incorporated wool/PAN hybrid fibres may provide a promising solution for eco-friendly smart textile applications.

5.
Materials (Basel) ; 14(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807970

ABSTRACT

Globally, automotive manufacturers are looking for ways to produce environmentally sustainable and recyclable materials for automobiles to meet new regulations and customer desires. To enable the needs for rapid response, this study investigated the feasibility of using waste and virgin wool fibres as cost-effective and sustainable alternatives for automotive sound and heat insulation using a chemical-free approach. Several properties of the currently available commercial automotive insulators were investigated in order to facilitate the designing of green wool-based needle-punched nonwoven materials. The effect of fibre diameter, nonwoven surface, layer structure, thickness, and area density on sound absorption and thermal resistance was investigated. The results suggested that the wool nonwoven materials, fabricated using waste and virgin wool fibres, possessed extremely efficient acoustic and thermal insulating properties comparable with the currently used commercial synthetic insulating materials. Besides, the wool nonwoven materials showed identical antibacterial and antifungal properties with a greater biodegradation rate (50%) than that of the commercial synthetic insulating materials. Hence, this study showed that natural wool fibres have the potential to be used as green, lightweight, and sustainable materials in the automobiles, while they qualify for Reuse-Recycle and Reuse-Recover purposes at the end-of-life of vehicles.

6.
RSC Adv ; 11(35): 21447-21462, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-35478831

ABSTRACT

This review provides a current summary of the major sources and distribution of ocean plastic contamination, their potential environmental effects, and prospects towards the mitigation of plastic pollution. A characterization between micro and macro plastics has been established, along with a comprehensive discussion of the most common plastic waste sources that end up in aquatic environments within these categories. Distribution of these sources stems mainly from improper waste management, road runoff, and wastewater pathways, along with potential routes of prevention. The environmental impact of ocean plastics is not yet fully understood, and as such, current research on the potential adverse health effects and impact on marine habitats has been discussed. With increasing environmental damage and economic losses estimated at $US 1.5 trillion, the challenge of ocean plastics needs to be at the forefront of political and societal discussions. Efforts to increase the feasibility of collected ocean plastics through value-added commercial products and development of an international supply chain has been explored. An integrative, global approach towards addressing the growing ocean plastic problem has been presented.

7.
Sci Rep ; 10(1): 3310, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32094354

ABSTRACT

There are millions of tons of post-food processing residues discarded annually. Currently, these waste materials are discarded to landfill, used as animal feed or incinerated. This suggests that there are potential uses for these materials in value-added applications. This work focuses on the characterization and valorization of peanut hulls through the generation of green composites. Peanut hulls were pyrolyzed at 500 °C and analyzed to discover their unique surface morphology and relatively low ash content. Raman spectral analysis determined ID/IG values of 0.74 for the samples, suggesting greater graphitic content than disordered carbon content. Such results were confirmed in X-ray diffraction analysis by the presence of (002) and (100) planes. Partially biobased engineering thermoplastic, poly(trimethylene terephthalate) (PTT), was combined with 20 wt.% biocarbon. The tensile and flexural moduli improved with the addition of biocarbon, and the bio-content increased from 35 to 48 wt.% as compared to neat PTT. The higher temperature biocarbon was found to have superior performance over the lower temperature sample. The enhanced sustainability of these materials suggested that peanut hulls can be valorized via thermochemical conversion to generate value-added products. Future works could focus on the optimization of these materials for non-structural automotive components or electrical housings.


Subject(s)
Arachis/chemistry , Carbon/chemistry , Polyethylene Terephthalates/chemistry , Arachis/ultrastructure , Cellulose/analysis , Electric Conductivity , Lignin/analysis , Particle Size , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Temperature , Tensile Strength , Thermogravimetry , X-Ray Diffraction
8.
ACS Omega ; 4(23): 20297-20307, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31815232

ABSTRACT

This work features the first-time use of poly(trimethylene terephthalate) (PTT), a biobased engineering thermoplastic, for fused deposition modeling (FDM) applications. Additives such as chain extenders (CEs) and impact modifiers are traditionally used to improve the processability of polymers for injection molding; as a proof of concept for their use in FDM, the same strategies were applied to PTT to improve its printability. The filament processing conditions and printing parameters were optimized to generate complete, warpage-free samples. The blends were characterized through physical, thermal, viscoelastic, and morphological analyses. In the optimal blend (90 wt % PTT, 10 wt % impact modifier, and 0.5 phr CE), the filament diameter was improved by ∼150%, the size of the spherulites significantly decreased to 5% of the ∼26 µm spherulite size found in neat PTT, and the melt flow index decreased to ∼4.7 g/10 min. From this blend, FDM samples with a high impact performance of ∼61 J/m were obtained, which are comparable to other conventional FDM thermoplastics. The ability to print complete and warpage-free samples from this blend suggests a new filament feedstock material for industrial and home-use FDM applications. This paper discusses methods to improve hard-to-print polymers and presents the improved printability of PTT as proof of these methods' effectiveness.

9.
Materials (Basel) ; 12(19)2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31569447

ABSTRACT

: In the recent years, automakers have been striving to improve the carbon footprint of their vehicles. Sustainable composites, consisting of natural fibers, and/or recycled polymers have been developed as a way to increase the "green content" and reduce the weight of a vehicle. In addition, recent studies have found that the introduction of synthetic fibers to a traditional fiber composite such as glass filled plastics, producing a composite with multiple fillers (hybrid fibers), can result in superior mechanical properties. The objective of this work was to investigate the effect of hybrid fibers on characterization and material properties of polyamide-6 (PA6)/polypropylene (PP) blends. Cellulose and glass fibers were used as fillers and the mechanical, water absorption, and morphological properties of composites were evaluated. The addition of hybrid fibers increased the stiffness (tensile and flexural modulus) of the composites. Glass fibers reduced composite water absorption while the addition of cellulose fibers resulted in higher composite stiffness. The mechanical properties of glass and cellulose filled PA6/PP composites were optimized at loading levels of 15 wt% glass and 10 wt% cellulose, respectively.

10.
Waste Manag ; 71: 97-108, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29113836

ABSTRACT

Striving to utilize sustainable material sources, polyester polyols made via glycolysis and esterification of recycled polyethylene terephthalate (rPET) scrap were used to synthesize flexible polyurethane (PU) foams typically found in automotive interior applications. The objective of this endeavor was to ascertain if a closed-loop model could be established with the discarded PET feedstock. In five separate formulations, up to 50% of the total polyol content (traditionally derived from petroleum-based feedstock) was replaced with the afore-mentioned sustainable recycled polyols. These foams underwent mechanical, thermal, morphological, and physical characterization testing to determine feasibility for use in an automotive interior. Young's modulus, tensile stress at maximum load, tear resistance, and compression modulus all increased by combined averages of 121%, 67%, 32%, and 150% over the control petroleum-based formulation, respectively, in foams possessing 50% rPET polyol content. Thermal stability also increased with sustainable polyol content; thermogravimetric analysis showed that 50% mass loss temperature increased by an average of 20 °C in foams containing 30% recycled polyol. Properties of density and SAG factor remained within 5% of the control petroleum-based reference foams. After comparing these findings to traditional polyols, a compelling argument can be made for the use of post-consumer automotive and industrial feedstocks in developing high-performing interior automotive PU foams.


Subject(s)
Polyesters , Recycling , Temperature , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...