Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 41(6): 788-793, 2023 06.
Article in English | MEDLINE | ID: mdl-36593397

ABSTRACT

Spatial transcriptomics and proteomics provide complementary information that independently transformed our understanding of complex biological processes. However, experimental integration of these modalities is limited. To overcome this, we developed Spatial PrOtein and Transcriptome Sequencing (SPOTS) for high-throughput simultaneous spatial transcriptomics and protein profiling. Compared with unimodal measurements, SPOTS substantially improves signal resolution and cell clustering and enhances the discovery power in differential gene expression analysis across tissue regions.


Subject(s)
Gene Expression Profiling , Transcriptome , Transcriptome/genetics , Proteins , Proteomics , Cluster Analysis
2.
J Mol Biol ; 433(19): 167209, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34419430

ABSTRACT

Detection of low-frequency mutations in cancer genomes or other heterogeneous cell populations requires high-fidelity sequencing. Molecular barcoding is one of the key technologies that enables the differentiation of true mutations from errors, which can be caused by sequencing or library preparation processes. However, current approaches where barcodes are introduced via primer extension or adaptor ligation do not utilize the full power of barcoding, due to complicated library preparation workflows and biases. Here we demonstrate the remarkable tolerance of MuA transposase to the presence of multiple replacements in transposon sequence, and explore this unique feature to engineer the MuA transposome complex with randomised nucleotides in 12 transposon positions, which can be introduced as a barcode into the target molecule after transposition event. We applied the approach of Unique MuA-based Molecular Indexing (UMAMI) to assess the power of rare mutation detection by shortgun sequencing on the Illumina platform. Our results show that UMAMI allows detection of rare mutations readily and reliably, and in this paper we report error rate values for the number of thermophilic DNA polymerases measured by using UMAMI.


Subject(s)
Mutation , Sequence Analysis, DNA/methods , Transposases/metabolism , High-Throughput Nucleotide Sequencing , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...