Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 144(4): 628-35, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15891815

ABSTRACT

Several lichens and the terrestrial alga Trentepohlia were found to have extremely depleted 15N signatures at two sites near the Rotorua geothermal area, New Zealand. Values, typically -20 per thousand, with several extreme cases of -24 per thousand, are more isotopically depleted than any previously quoted delta15N signature for vegetation growing in natural environments. For Trentepohlia, distance from a geothermal source did not affect isotopic signature. A 100-km transect showed that the phenomenon is widespread and the discrimination is not related to substrate N, or to elevation. Rainfall NHx and atmospheric gaseous NH3 (NH3(g)) were shown to be isotopically depleted in the range -1 per thousand to -8 per thousand and could not, of themselves, be responsible for the plant values obtained. A simulation of Trentepohlia thallus was created using an acidified fiberglass mat and was allowed to absorb NH3(g) from the atmosphere. Mats exposed at the geothermal sites and on farm-land showed a significant further depletion of 15N to -17 per thousand. We hypothesize that the extreme isotopic depletion is due to dual fractionation: firstly by the volatilization of NH3(g) from aqueous sources into the atmosphere; secondly by the diffusive assimilation of that NH3(g) into vegetation. We further hypothesize that lithophytes, epiphytes, and higher plants, growing on strongly N-limited substrates, will show this phenomenon more or less, depending on the proportion of diffusively assimilated NH3(g) utilized as a N source. Many of the isotopically depleted delta15N signatures in vegetation, previously reported in the literature, especially epiphytes, may be due to this form of uptake depending on the concentration of atmospheric NH3(g), and the degree of reliance on that form of N.


Subject(s)
Ammonia/metabolism , Chlorophyta/metabolism , Lichens/metabolism , Nitrogen Isotopes/metabolism , Air Pollutants , Biological Transport, Active , Dairying , Ecosystem , New Zealand , Rain
2.
Nucleic Acids Res ; 33(Database issue): D471-5, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15608240

ABSTRACT

The Mouse Genome Database (MGD) forms the core of the Mouse Genome Informatics (MGI) system (http://www.informatics.jax.org), a model organism database resource for the laboratory mouse. MGD provides essential integration of experimental knowledge for the mouse system with information annotated from both literature and online sources. MGD curates and presents consensus and experimental data representations of genotype (sequence) through phenotype information, including highly detailed reports about genes and gene products. Primary foci of integration are through representations of relationships among genes, sequences and phenotypes. MGD collaborates with other bioinformatics groups to curate a definitive set of information about the laboratory mouse and to build and implement the data and semantic standards that are essential for comparative genome analysis. Recent improvements in MGD discussed here include the enhancement of phenotype resources, the re-development of the International Mouse Strain Resource, IMSR, the update of mammalian orthology datasets and the electronic publication of classic books in mouse genetics.


Subject(s)
Databases, Genetic , Genomics , Mice/genetics , Animals , Genes , Genome , Genotype , Internet , Mice, Mutant Strains , Phenotype , Systems Integration , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...