Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37687704

ABSTRACT

Nowadays, humanity has to face the problem of constantly increasing amounts of waste, which cause not only environmental pollution but also poses a critical danger to human health. Moreover, the growth of landfill sites involves high costs of establishment, development, and maintenance. Glass is one of the materials whose recycling ratio is still insufficient. Therefore, in the presented work, the influence of the particle size and share of waste glass on the consistency, morphology, specific surface area, water absorption, setting time, and mechanical properties of geopolymers was determined. Furthermore, for the first time, the fire resistance and final setting time of such geopolymer composites were presented in a wide range. Based on the obtained results, it was found that the geopolymer containing 20% unsorted waste glass obtained a final setting time that was 44% less than the sample not containing waste glass, 51.5 MPa of compressive strength (135.2% higher than the reference sample), and 13.5 MPa of residual compressive strength after the fire resistance test (164.7% more than the reference sample). Furthermore, it was found that the final setting time and the total pore volume closely depended on the additive's share and particle size. In addition, the use of waste glass characterized by larger particle sizes led to higher strength and lower mass loss after exposure to high temperatures compared to the composite containing smaller ones. The results presented in this work allow not only for reducing the costs and negative impact on the environment associated with landfilling but also for developing a simple, low-cost method of producing a modern geopolymer composite with beneficial properties for the construction industry.

2.
Materials (Basel) ; 16(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37512464

ABSTRACT

The porous geopolymer has been tested for its content of water using impedance methods. The pores of the material were filled with distilled water using a desiccator and a vacuum pump. An analysis of differential scanning calorimetry (DSC) was carried out in the next step to check the content of water, porosity and approximate value of specific heat of the geopolymer. Additionally, mercury porosimeter has been used for checking the porosity. The geopolymer material characterized in this way was subjected to impedance tests aimed at developing a quick method for assessing the water content in the material. Impedance measurements have been realized on an electrochemical workstation applying a 50 mV non-destructive amplitude of the potential and a frequency range of 1 Hz to 100 kHz. Change in the module of impedance and the phase shift angle were measured while the material was dried out. Significant differences were observed. The obtained graphs were simulated using a schematic model consisting of constant phase elements (CPEs) and a resistor (R). These values showed mechanisms of charge conduction. A simple method for assessing the water content of a porous geopolymer has been proposed in this paper. The real and imaginary impedance values were shown in Nyquist graphs. These graphs have characteristic maxima that move according to a linear equation with decreasing water content. Changes in Nyqiust charts are clearly visible even with small changes in the water content of the material and can be very useful for assessing it.

3.
Polymers (Basel) ; 15(7)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37050265

ABSTRACT

This article examines the impact of fatigue cycles on polylactide samples produced by 3D printing using the FDM method. Samples were printed in three infill degree variants: 50%, 75% and 100%. To compere the influence of infill degree on PLA properties, several tests, including the uniaxial tensile test, the low-cycle fatigue test, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), were conducted. Poisson's ratio has also been studied. Single hysteresis loops were summed to obtain the entire low-fatigue cycle. The infill of density influenced all compared mechanical parameters. The decrease in infill degree caused the reduction of Young's modulus and shear modulus. For a 100% degree of sample infill, a higher number of transferred load cycles were observed compared to PLA with 75% and 50% of infill. Additionally, the value of the transferred cyclic load before fatigue failure and the dissipation of mechanical energy was the highest for 100% of infill. It is also worth noting that fatigue tests can positively affect the appearance of the PLA structure. Obviously, it depends on the number of load cycles and the infill density. It causes that if the goal is to transfer as much load as possible over a long period of time, the maximum filling of the printed element should be used.

4.
Materials (Basel) ; 15(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36234078

ABSTRACT

In the current work, several composites made with fly ash reinforcements are used to conduct electrical discharge machining (EDM) on stainless steel that is commercially accessible. Four composites were prepared with 2.5 to 10% reinforcement of fly ash with steps of 2.5%, copper is used as the matrix material. The specimens were created using the powder metallurgy method, which involved compaction pressures of 450 MPa and 900 °C for 90 min of sintering. The prepared composites are used as the electrode tool for EDM. EDM studies were carried out at two different current amplitudes (5A and 15A) by maintaining the Pulse on time (100 µs), Pulse off time (50 µs), and the depth of machining as 2 mm. The findings show that the addition of more fly ash to the copper matrix increased the material removal rate when cutting the SS304 plate and had a negative impact on the tool. The composite loses its ability to transfer heat during machining as the level of fly ash increases, raising the temperature in the copper matrix and causing the copper to melt more quickly at the electrode interface during machining, leading to increased electrode wear. While tool life was reduced because of the increase in current amplitude, machinability was enhanced.

5.
Materials (Basel) ; 14(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34771832

ABSTRACT

The main objective of the article is to develop the concept of flock fragmentation and the averaging method for the application of electrocoagulation in the process of treating wastewater from coke ovens. The designed solution was part of an innovative system for the coke oven wastewater treatment process. The system is dedicated to removing the hazardous elements and compounds from wastewater from leaching ashes in municipal waste incineration plants. The design of the process and its automatization was based on a quantitative simulation method. The balance equations of mass, energy, and momentum of transport, complemented by the kinetics of the related reaction, are used during the calculation of the process. The main result achieved is a practical solution-the reactor's scheme, classified due to a patent procedure in the Polish Patent Office.

6.
Materials (Basel) ; 14(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34640040

ABSTRACT

The variable frequency conductivity was applied to characterize the process of solidification of geopolymers based on fly ash with sand additives. XRD qualitative and quantitative analysis, porosity measurements, and sorption analysis of specific surface area were performed. The conductivity was correlated with porosity and specific surface area of geopolymer concretes. Both values of conductivity, real and imaginary parts, decreased during polymerization processing time. Characteristic maximum on graphs describing susceptance vs. frequency curve was observed. The frequency of this maximum depends on time of polymerization and ageing, and can also indicate porosity of material. Low-porous geopolymer concrete shows both low-conductivity values, and susceptance maximum frequency peak occurs more in the higher frequencies than in high-porous materials.

7.
Materials (Basel) ; 14(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34501068

ABSTRACT

This study examines foamed geopolymer composites based on fly ash from the Skawina coal-fired power plant in Poland. The paper presents the effect of adding 3% and 5% by weight of glass wool waste on selected properties of foamed geopolymers. The scope of the tests carried out included density measurements, compressive and bending strength tests, measurements of the heat conduction coefficient, and the results of measurements of changes in thermal radiation in samples subjected to a temperature of 800 °C. The obtained results indicate that glass wool waste can be successfully used to lower the density and heat conduction coefficient of foamed geopolymer composites with a fly ash matrix. In addition, the results of changes in thermal radiation in the samples subjected to the temperature of 800 °C showed a positive effect of the addition of glass wool waste. Moreover, the introduction of the addition of glass wool waste made it possible to increase the compressive strength of the examined foamed geopolymers. For the material modified with 3% by weight of mineral wool, the increase in compressive strength was about 10%, and the increase in fibers in the amount of 5% by weight resulted in an increase of 20% concerning the base material. The obtained results seem promising for future applications. Such materials can be used in technical constructions as thermal insulation materials.

8.
Materials (Basel) ; 14(17)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34501160

ABSTRACT

Chitosan belongs to the group of biopolymers with increasing range of potential applications therefore searching for new raw materials as well as new techniques of obtaining of this polysaccharide are currently a subject of interest of many scientists. Presented manuscript describes preparation of chitosan from crickets. Obtainment of final product required a number of processes aimed at removal of undesirable substances such as waxes, mineral salts, proteins or pigments from above-mentioned insects. Chemical structure of fractions obtained after each step was compared with the structure of commercial chitosan by means of techniques such as X-ray diffraction and FT-IR spectroscopy. Final product was subsequently used for preparation of polymer capsules that were modified with active substance characterized by antibacterial and anticancer activity-nisin. Next, sorption capacity of obtained materials was evaluated as well as a release profile of active substance in different environments. Based on the conducted research it can be concluded that crickets constitute an alternative for shellfish and other conventional sources of chitosan. Furthermore, obtained capsules on the basis of such prepared chitosan can be considered as drug delivery systems which efficiency of release of active substance is bigger in alkaline environments.

9.
Molecules ; 26(6)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804671

ABSTRACT

Many investigations are currently being performed to develop the effective synthesis methodology of magnetic nanoparticles with appropriately functionalized surfaces. Here, the novelty of the presented work involves the preparation of nano-sized PEGylated Fe3O4@Ag particles, i.e., the main purpose was the synthesis of magnetic nanoparticles with a functionalized surface. Firstly, Fe3O4 particles were prepared via the Massart process. Next, Ag+ reduction was conducted in the presence of Fe3O4 particles to form a nanosilver coating. The reaction was performed with arabic gum as a stabilizing agent. Sound energy-using sonication was applied to disintegrate the particles' agglomerates. Next, the PEGylation process aimed at the formation of a coating on the particles' surface using PEG (poly(ethylene glycol)) has been performed. It was proved that the arabic gum limited the agglomeration of nanoparticles, which was probably caused by the steric effect caused by the branched compounds from the stabilizer that adsorbed on the surface of nanoparticles. This effect was also enhanced by the electrostatic repulsions. The process of sonication caused the disintegration of aggregates. Formation of iron (II, III) oxide with a cubic structure was proved by diffraction peaks. Formation of a nanosilver coating on the Fe3O4 nanoparticles was confirmed by diffraction peaks with 2θ values 38.15° and 44.35°. PEG coating on the particles' surface was proven via FT-IR (Fourier Transform Infrared Spectroscopy) analysis. Obtained PEG-nanosilver-coated Fe3O4 nanoparticles may find applications as carriers for targeted drug delivery using an external magnetic field.


Subject(s)
Coated Materials, Biocompatible , Magnetite Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Silver/chemistry , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/chemistry
10.
Materials (Basel) ; 14(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467449

ABSTRACT

This paper presents the results of research on geopolymer composites based on fly ash with the addition of melamine fibers in amounts of 0.5%, 1% and 2% by weight and, for comparison, without the addition of fibers. The melamine fibers used in the tests retain their melamine resin properties by 100% and are characterized by excellent acoustic and thermal insulation as well as excellent filtration. In addition, these fibers are nonflammable, resistant to chemicals, resistant to UV radiation, characterized by high temperature resistance and, most importantly, do not show thermal-related shrinking, melting and dripping. This paper presents the results of density measurements, compressive and flexural strength as well as the results of the measurement of thermal radiation changes in samples subjected to a temperature of 600 °C. The results indicate that melamine fibers can be used as geopolymer reinforcement. The best result was achieved for 0.5% by weight amount of reinforcement, approximately 53 MPa, compared to 41 MPa for a pure matrix. In the case of flexural strength, the best results were obtained for the samples made of unreinforced geopolymer and samples with the addition of 0.5% by weight of melamine fibers, which were characterized by bending strength values above 9 MPa, amounting to 10.7 MPa and 9.3 MPa, respectively. The thermal radiation measurements and fire-jet test did not confirm the increasing thermal and fire resistance of the composites reinforced by melamine fiber.

11.
Materials (Basel) ; 15(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35009185

ABSTRACT

Nowadays, a great attention is directed into development of innovative multifunctional composites which may support bone tissue regeneration. This may be achieved by combining collagen and hydroxyapatite showing bioactivity, osteoconductivity and osteoinductivity with such biocompatible polymers as polyvinylpyrrolidone (PVP) and poly(vinyl alcohol) (PVA). Here PVA/PVP-based composites modified with hydroxyapatite (HAp, 10 wt.%) and collagen (30 wt.%) were obtained via UV radiation while two types of collagen were used (fish and bovine) and crosslinking agents differing in the average molecular weight. Next, their chemical structure was characterized using Fourier transform infrared (FT-IR) spectroscopy, roughness of their surfaces was determined using a stylus contact profilometer while their wettability was evaluated by a sessile drop method followed by the measurements of their surface free energy. Subsequently, swelling properties of composites were verified in simulated physiological liquids as well as the behavior of composites in these liquids by pH measurements. It was proved that collagen-modified composites showed higher swelling ability (even 25% more) compared to unmodified ones, surface roughness, biocompatibility towards simulated physiological liquids and hydrophilicity (contact angles lower than 90°). Considering physicochemical properties of developed materials and a possibility of the preparation of their various shapes and sizes, it may be concluded that developed materials showed great application potential for biomedical use, e.g., as materials filling bone defects supporting their treatments and promoting bone tissue regeneration due to the presence of hydroxyapatite with osteoinductive and osteoconductive properties.

12.
Materials (Basel) ; 13(14)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32660077

ABSTRACT

In this work, synthesis and investigations on chitosan-based hydrogels modified with Aloe vera juice are presented. These materials were synthesized by UV radiation. Investigations involved analysis of chemical structure by FTIR spectroscopy, sorption properties in physiological liquids, strength properties by texture analyzer, surface topography by Atomic Force Microscopy (AFM technique), and in vitro cytotoxicity by MTT test using L929 murine fibroblasts. Particular attention was focused both on determining the impact of the amount and the molecular weight of the crosslinker used for the synthesis as well as on the introduced additive on the properties of hydrogels. It was proven that modified hydrogels exhibited higher swelling ability. Introduced additive affected the tensile strength of hydrogels-modified materials showed 23% higher elongation. The greater amount of the crosslinker used in the synthesis, the more compact the structure, leading to the lower elasticity and lower sorption of hydrogels was reported. Above 95%, murine fibroblasts remained viable after 24 h incubation with hydrogels. It indicates that tested materials did not exhibit cytotoxicity toward these lines. Additionally, materials with Aloe vera juice were characterized by lower surface roughness. Conducted investigations allowed us to state that such modified hydrogels may be considered as useful for biomedical purposes.

13.
Materials (Basel) ; 13(11)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517282

ABSTRACT

The study evaluated the possibility of using natural fibers as a reinforcement of bio-polyethylene. Flax, coconut, basalt fiber, and wood flour were used in the work. Strength tests like static tensile test, three-point flexural test, or impact strength showed a positive effect of reinforcing bio-polyethylene-based composites. The effect of water and thermal ageing on the mechanical behavior of composites was assessed. In order to analyze the structure, SEM microscope images were taken and the effect of natural fibers on the change in the nature of cracking of composites was presented. Composites with natural fibers at a content of 12% by weight, resulting in increase of strength and rigidity of materials. The greatest strengthening effect for natural fibers was obtained for the composite with basalt fibers.

14.
J Air Waste Manag Assoc ; 68(11): 1190-1197, 2018 11.
Article in English | MEDLINE | ID: mdl-29902119

ABSTRACT

This paper discusses the possibility of using the process of geopolymerization to immobilize ash from municipal waste incineration plants. Fly ash used in the related research came from the same incineration plant, one of the biggest in Poland. The examination was conducted on the waste samples labeled as 190107* and 190113*. The comparison included such properties of waste as chemical composition, dioxin content, and size and morphology of particles. The waste was solidified in geopolymer matrix made from (i) fly ash from the combustion of bituminous coal or (ii) metakaolin. The waste percentages were 50 mass% and 70 mass%, respectively. Moreover, leaching tests were carried out and mechanical properties of the geopolymers materials containing immobilized ashes were analyzed. It was proved that geopolymerization process allows for the high-level immobilization of compounds and elements such as chlorides, sulfates, fluorides, barium, and zinc. Additionally, it was observed that in the case of the geopolymer samples containing 70 mass% of 190107* waste, the average compressive strength exceeded 18 MPa. Implications: A novel aspect of the results presented in this paper is the comprehensive investigation of the immobilization of large amounts of hazardous waste by means of the synthesis of geopolymers from metakaolin or coal fly ash. According to these results, it was determined that the level of immobilization is much higher in the case of the geopolymers based on metakaolin in comparison with geopolymers made from coal fly ash. On the basis on the obtained results, investigated geopolymers may be successfully used, e.g., as barriers or linear drains in landfills.


Subject(s)
Coal Ash/analysis , Polymers/analysis , Refuse Disposal/methods , Incineration , Poland
SELECTION OF CITATIONS
SEARCH DETAIL
...