Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37762297

ABSTRACT

Parasitic helminths induce a transient, short-term inflammation at the beginning of infection, but in persistent infection may suppress the systemic immune response by enhancing the activity of regulatory M2 macrophages. The aim of the study was to determine how nematode infection affects age-related neuroinflammation, especially macrophages in the nervous tissue. Here, intraperitoneal LPS-induced systemic inflammation resulting in brain neurodegeneration was enhanced by prolonged Heligmosomoides polygyrus infection in C57BL/6 mice. The changes in the brain coincided with the increase in M1 macrophages, reduced survivin level, enhanced APP and GFAP expression, chitin-like chains deposition in the brain and deterioration behaviour manifestations. These changes were also observed in transgenic C57BL/6 mice predisposed to develop neurodegeneration typical for Alzheimer's disease in response to pathogenic stimuli. Interestingly, in mice infected with the nematode only, the greater M2 macrophage population resulted in better results in the forced swim test. Given the growing burden of neurodegenerative diseases, understanding such interactive associations can have significant implications for ageing health strategies and disease monitoring.


Subject(s)
Aging , Lipopolysaccharides , Animals , Mice , Mice, Inbred C57BL , Lipopolysaccharides/toxicity , Inflammation
2.
Int J Mol Sci ; 23(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35563135

ABSTRACT

The term Western diet (WD) describes the consumption of large amounts of highly processed foods, rich in simple sugars and saturated fats. Long-term WD feeding leads to insulin resistance, postulated as a risk factor for Alzheimer's disease (AD). AD is the main cause of progressive dementia characterized by the deposition of amyloid-ß (Aß) plaques and neurofibrillary tangles consisting of the hyperphosphorylated tau (p-Tau) protein in the brain, starting from the entorhinal cortex and the hippocampus. In this study, we report that WD-derived impairment in insulin signaling induces tau and Aß brain pathology in wild-type C57BL/6 mice, and that the entorhinal cortex is more sensitive than the hippocampus to the impairment of brain insulin signaling. In the brain areas developing WD-induced insulin resistance, we observed changes in p-Tau(Thr231) localization in neuronal subcellular compartments, indicating progressive tauopathy, and a decrease in amyloid precursor protein levels correlating with the appearance of Aß peptides. These results suggest that WD promotes the development of AD and may be considered not only a risk factor, but also a modifiable trigger of AD.


Subject(s)
Alzheimer Disease , Insulin Resistance , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Diet, Western/adverse effects , Insulin/metabolism , Insulin Resistance/physiology , Mice , Mice, Inbred C57BL , Plaque, Amyloid/metabolism , tau Proteins/metabolism
3.
Int J Mol Sci ; 22(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34884899

ABSTRACT

Palmitic acid (C16:0) is the most abundant saturated fatty acid in animals serving as a substrate in synthesis and ß-oxidation of other lipids, and in the modification of proteins called palmitoylation. The influence of dietary palmitic acid on protein S-palmitoylation remains largely unknown. In this study we performed high-throughput proteomic analyses of a membrane-enriched fraction of murine liver to examine the influence of a palm oil-rich diet (HPD) on S-palmitoylation of proteins. HPD feeding for 4 weeks led to an accumulation of C16:0 and C18:1 fatty acids in livers which disappeared after 12-week feeding, in contrast to an accumulation of C16:0 in peritoneal macrophages. Parallel proteomic studies revealed that HPD feeding induced a sequence of changes of the level and/or S-palmitoylation of diverse liver proteins involved in fatty acid, cholesterol and amino acid metabolism, hemostasis, and neutrophil degranulation. The HPD diet did not lead to liver damage, however, it caused progressing obesity, hypercholesterolemia and hyperglycemia. We conclude that the relatively mild negative impact of such diet on liver functioning can be attributed to a lower bioavailability of palm oil-derived C16:0 vs. that of C18:1 and the efficiency of mechanisms preventing liver injury, possibly including dynamic protein S-palmitoylation.


Subject(s)
Liver/metabolism , Palm Oil/administration & dosage , Palmitic Acid/chemistry , Proteomics/methods , Soybean Oil/administration & dosage , Amino Acids/metabolism , Animals , Dietary Supplements , Fatty Acids/analysis , Homeostasis , Liver/drug effects , Macrophages, Peritoneal/chemistry , Male , Mass Spectrometry , Mice , Palm Oil/chemistry , Palm Oil/pharmacology , Soybean Oil/pharmacology
4.
Ageing Res Rev ; 70: 101397, 2021 09.
Article in English | MEDLINE | ID: mdl-34214643

ABSTRACT

An excess of saturated fatty acids and simple sugars in the diet is a known environmental risk factor of Alzheimer's disease (AD) but the holistic view of the interacting processes through which such diet may contribute to AD pathogenesis is missing. We addressed this need through extensive analysis of published studies investigating the effects of western diet (WD) on AD development in humans and laboratory animals. We reviewed WD-induced systemic alterations comprising metabolic changes, induction of obesity and adipose tissue inflammation, gut microbiota dysbiosis and acceleration of systemic low-grade inflammation. Next we provide an overview of the evidence demonstrating that WD-associated systemic alterations drive impairment of the blood-brain barrier (BBB) and development of neuroinflammation paralleled by accumulation of toxic amyloid. Later these changes are followed by dysfunction of synaptic transmission, neurodegeneration and finally memory and cognitive impairment. We conclude that WD can trigger AD by acceleration of inflammaging, and that BBB impairment induced by metabolic and systemic inflammation play the central role in this process. Moreover, the concurrence of neuroinflammation and Aß dyshomeostasis, which by reciprocal interactions drive the vicious cycle of neurodegeneration, contradicts Aß as the primary trigger of AD. Given that in 2019 the World Health Organization recommended focusing on modifiable risk factors in AD prevention, this overview of the sequential, complex pathomechanisms initiated by WD, which can lead from peripheral disturbances to neurodegeneration, can support future prevention strategies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Metabolic Syndrome , Alzheimer Disease/etiology , Animals , Diet, Western/adverse effects , Humans , Inflammation , Metabolic Syndrome/etiology
5.
Front Aging Neurosci ; 13: 654509, 2021.
Article in English | MEDLINE | ID: mdl-33867971

ABSTRACT

Alzheimer's disease (AD) is an aging-dependent, irreversible neurodegenerative disorder and the most common cause of dementia. The prevailing AD hypothesis points to the central role of altered cleavage of amyloid precursor protein (APP) and formation of toxic amyloid-ß (Aß) deposits in the brain. The lack of efficient AD treatments stems from incomplete knowledge on AD causes and environmental risk factors. The role of lifestyle factors, including diet, in neurological diseases is now beginning to attract considerable attention. One of them is western diet (WD), which can lead to many serious diseases that develop with age. The aim of the study was to investigate whether WD-derived systemic disturbances may accelerate the brain neuroinflammation and amyloidogenesis at the early stages of AD development. To verify this hypothesis, transgenic mice expressing human APP with AD-causing mutations (APPswe) were fed with WD from the 3rd month of age. These mice were compared to APPswe mice, in which short-term high-grade inflammation was induced by injection of lipopolysaccharide (LPS) and to untreated APPswe mice. All experimental subgroups of animals were subsequently analyzed at 4-, 8-, and 12-months of age. APPswe mice at 4- and 8-months-old represent earlier pre-plaque stages of AD, while 12-month-old animals represent later stages of AD, with visible amyloid pathology. Already short time of WD feeding induced in 4-month-old animals such brain neuroinflammation events as enhanced astrogliosis, to a level comparable to that induced by the administration of pro-inflammatory LPS, and microglia activation in 8-month-old mice. Also, WD feeding accelerated increased Aß production, observed already in 8-month-old animals. These brain changes corresponded to diet-induced metabolic disorders, including increased cholesterol level in 4-months of age, and advanced hypercholesterolemia and fatty liver disease in 8-month-old mice. These results indicate that the westernized pattern of nourishment is an important modifiable risk factor of AD development, and that a healthy, balanced, diet may be one of the most efficient AD prevention methods.

6.
Cancers (Basel) ; 12(8)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759730

ABSTRACT

Induction of mitotic catastrophe through the disruption of microtubules is an established target in cancer therapy. However, the molecular mechanisms determining the mitotic catastrophe and the following apoptotic or non-apoptotic cell death remain poorly understood. Moreover, many existing drugs targeting tubulin, such as vincristine, have reduced efficacy, resulting from poor solubility in physiological conditions. Here, we introduce a novel small molecule 2-aminoimidazoline derivative-OAT-449, a synthetic water-soluble tubulin inhibitor. OAT-449 in a concentration range from 6 to 30 nM causes cell death of eight different cancer cell lines in vitro, and significantly inhibits tumor development in such xenograft models as HT-29 (colorectal adenocarcinoma) and SK-N-MC (neuroepithelioma) in vivo. Mechanistic studies showed that OAT-449, like vincristine, inhibited tubulin polymerization and induced profound multi-nucleation and mitotic catastrophe in cancer cells. HeLa and HT-29 cells within 24 h of treatment arrested in G2/M cell cycle phase, presenting mitotic catastrophe features, and 24 h later died by non-apoptotic cell death. In HT-29 cells, both agents altered phosphorylation status of Cdk1 and of spindle assembly checkpoint proteins NuMa and Aurora B, while G2/M arrest and apoptosis blocking was consistent with p53-independent accumulation in the nucleus and largely in the cytoplasm of p21/waf1/cip1, a key determinant of cell fate programs. This is the first common mechanism for the two microtubule-dissociating agents, vincristine and OAT-449, determining the cell death pathway following mitotic catastrophe demonstrated in HT-29 cells.

7.
Neural Plast ; 2019: 8215017, 2019.
Article in English | MEDLINE | ID: mdl-31073303

ABSTRACT

Physical training confers protection to dopaminergic neurons in rodent models of parkinsonism produced by neurotoxins. The sparing effect of physical training on dopaminergic neurons can be tested with training applied during chronic MPTP treatment, while the neurorestorative effect when training is applied after completing such treatment. In this study, the effect of the onset of training respective to chronic MPTP treatment was specifically addressed. Three groups of mice were injected with 10 doses of MPTP (12.5 mg/kg/injection) over 5 weeks. The first group remained sedentary; the second one underwent early onset training, which started 1 week before commencing MPTP treatment, continued throughout 5 weeks of treatment and 4 weeks thereafter; the third group underwent late-onset training of the same length and intensity as the former group, except that it started immediately after the end of MPTP treatment. Two groups served as controls: a saline-injected group that remained sedentary and saline-injected group, which underwent the same training as the early and late-onset training groups. Both early and late-onset physical training saved almost all nigral and VTA dopaminergic neurons, prevented inflammatory response, and increased the BDNF and GDNF levels to a similar extent. From these results one may conclude that early and late-onset training schedules were equipotent in their neuroprotective effect and that the mechanism of neuroprotection was similar. The sparing effect of early onset training may be satisfactorily explained by assuming that the increased level of BDNF and GDNF prevented the degeneration of dopaminergic neurons. To explain a similar number of dopaminergic neurons detected at the end of the early and late-onset training, one should additionally assume that the former training schedule induced neurogenesis. Results of this study support the view that physical activity may be neuroprotective even at a more advanced stage of PD and justify starting physical activity at any point of the disease.


Subject(s)
Dopaminergic Neurons/physiology , Exercise Therapy , Neuronal Plasticity , Parkinson Disease/prevention & control , Parkinson Disease/physiopathology , Animals , Astrocytes/physiology , Chronic Disease/prevention & control , Disease Models, Animal , Male , Mice, Inbred C57BL , Microglia/physiology , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/prevention & control , Pars Compacta/physiopathology , Ventral Tegmental Area/physiopathology
8.
J Neurosci Methods ; 319: 47-59, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30448465

ABSTRACT

Background Tauopathies, including Alzheimer's disease (AD), are multifactorial diseases with strong phenotypic and genetic heterogeneity. Recent evidence revealed that mechanisms of pathogenesis of early (hereditary) and late (sporadic) forms of AD are different. This is not properly reflected in current experimental models, especially when it comes to sporadic forms of AD. Here, we present novel seeding based model and explore its suitability for therapeutic intervention. New method We validate novel region specific approach to modelling Tau pathology reported by Koss and co-authors (2015). Wistar rats 3, 9 and 15 month-old were surgically prepared for hippocampal loading with pore-former polymeric 1,3-alkylpyridinium salts (Poly-APS) and recombinant human tau including pharmacological inhibition of phosphatase activity by okadaic acid co-administration. We explored whether tau seeding caused molecular and behavioural traits reminiscent of AD and explored their reversibility/prevention by administration of either memantine or lithium. Results The presented model emulates several changes observed in progressive dementia such as: heightened levels of tau and its hyperphosphorylation, changes in tau compartmentalization, breakdown of the cytoskeleton, cognitive impairments, and sensitivity for anti-dementia treatment. Comparison with existing methods Seeding has been achieved in transgenic mouse models, but this is the first rat model significantly mimicking cognitive and neuronal changes akin to tauopathies. Moreover, we have successfully included the factor age in our model and can show sensitivity to drug treatment. Conclusions These data validate a novel model of locally infused recombinant human Tau as an inducer of tauopathy in rats and holds the potential for development of novel therapies.


Subject(s)
CA1 Region, Hippocampal/metabolism , Disease Models, Animal , Lithium Chloride/administration & dosage , Memantine/administration & dosage , Neuroprotective Agents/administration & dosage , Polymers/metabolism , Pyridinium Compounds/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Alzheimer Disease/metabolism , Animals , CA1 Region, Hippocampal/drug effects , Male , Neurons/drug effects , Neurons/metabolism , Phosphorylation , Polymers/administration & dosage , Pyridinium Compounds/administration & dosage , Rats, Wistar , Recombinant Proteins/metabolism
9.
Biomark Med ; 11(10): 917-931, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28976776

ABSTRACT

Current Alzheimer's disease (AD) diagnostics is based on cognitive testing, and detecting amyloid Aß and τ pathology by brain imaging and assays of cerebrospinal fluid. However, biomarkers identifying complex pathways contributing to pathology are lacking, especially for early AD. Preferably, such biomarkers should be more cost-effective and present in easily available diagnostic tissues, such as blood. Here, we summarize the recent findings of potential early AD molecular diagnostic biomarkers in blood platelets, lymphocytes and erythrocytes. We review molecular alterations which refer to such main hypotheses of AD pathogenesis as amyloid cascade, oxidative and mitochondrial stress, inflammation and alterations in cell cycle regulatory molecules. The major advantage of such biomarkers is the potential ability to indicate individualized therapies in AD patients.


Subject(s)
Alzheimer Disease/diagnosis , Amyloid beta-Peptides/metabolism , Biomarkers/blood , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Blood Cells/metabolism , Blood Platelets/metabolism , Brain/diagnostic imaging , Humans , Lymphocytes/metabolism , Mitochondria/metabolism , Oxidative Stress , Serotonin/metabolism , tau Proteins/blood , tau Proteins/cerebrospinal fluid
10.
J Immunol Res ; 2017: 4626540, 2017.
Article in English | MEDLINE | ID: mdl-28293644

ABSTRACT

Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the main cause of dementia. The disease is among the leading medical concerns of the modern world, because only symptomatic therapies are available, and no reliable, easily accessible biomarkers exist for AD detection and monitoring. Therefore extensive research is conducted to elucidate the mechanisms of AD pathogenesis, which seems to be heterogeneous and multifactorial. Recently much attention has been given to the neuroinflammation and activation of glial cells in the AD brain. Reports also highlighted the proinflammatory role of T lymphocytes infiltrating the AD brain. However, in AD molecular and cellular alterations involving T cells and immune mediators occur not only in the brain, but also in the blood and the cerebrospinal fluid (CSF). Here we review alterations concerning T lymphocytes and related immune mediators in the AD brain, CSF, and blood and the mechanisms by which peripheral T cells cross the blood brain barrier and the blood-CSF barrier. This knowledge is relevant for better AD therapies and for identification of novel biomarkers for improved AD diagnostics in the blood and the CSF. The data will be reviewed with the special emphasis on possibilities for development of AD biomarkers.


Subject(s)
Alzheimer Disease/immunology , Biomarkers/blood , Brain/immunology , Inflammation Mediators/metabolism , T-Lymphocytes/immunology , Alzheimer Disease/diagnosis , Animals , Biomarkers/cerebrospinal fluid , Blood-Brain Barrier , Humans , Inflammation Mediators/cerebrospinal fluid
11.
Cell Mol Life Sci ; 72(23): 4613-32, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26070304

ABSTRACT

Patients suffering from tauopathies including frontotemporal dementia (FTD) and Alzheimer's disease (AD) present with intra-neuronal aggregation of microtubule-associated protein Tau. During the disease process, Tau undergoes excessive phosphorylation, dissociates from microtubules and aggregates into insoluble neurofibrillary tangles (NFTs), accumulating in the soma. While many aspects of the disease pathology have been replicated in transgenic mouse models, a region-specific non-transgenic expression model is missing. Complementing existing models, we here report a novel region-specific approach to modelling Tau pathology. Local co-administration of the pore-former polymeric 1,3-alkylpyridinium salts (Poly-APS) extracted from marine sponges, and synthetic full-length 4R recombinant human Tau (hTau) was performed in vitro and in vivo. At low doses, Poly-APS was non-toxic and cultured cells exposed to Poly-APS (0.5 µg/ml) and hTau (1 µg/ml; ~22 µM) had normal input resistance, resting-state membrane potentials and Ca(2+) transients induced either by glutamate or KCl, as did cells exposed to a low concentration of the phosphatase inhibitor Okadaic acid (OA; 1 nM, 24 h). Combined hTau loading and phosphatase inhibition resulted in a collapse of the membrane potential, suppressed excitation and diminished glutamate and KCl-stimulated Ca(2+) transients. Stereotaxic infusions of Poly-APS (0.005 µg/ml) and hTau (1 µg/ml) bilaterally into the dorsal hippocampus at multiple sites resulted in hTau loading of neurons in rats. A separate cohort received an additional 7-day minipump infusion of OA (1.2 nM) intrahippocampally. When tested 2 weeks after surgery, rats treated with Poly-APS+hTau+OA presented with subtle learning deficits, but were also impaired in cognitive flexibility and recall. Hippocampal plasticity recorded from slices ex vivo was diminished in Poly-APS+hTau+OA subjects, but not in other treatment groups. Histological sections confirmed the intracellular accumulation of hTau in CA1 pyramidal cells and along their processes; phosphorylated Tau was present only within somata. This study demonstrates that cognitive, physiological and pathological symptoms reminiscent of tauopathies can be induced following non-mutant hTau delivery into CA1 in rats, but functional consequences hinge on increased Tau phosphorylation. Collectively, these data validate a novel model of locally infused recombinant hTau protein as an inducer of Tau pathology in the hippocampus of normal rats; future studies will provide insights into the pathological spread and maturation of Tau pathology.


Subject(s)
Hippocampus/cytology , Neuronal Plasticity/physiology , Neurons/drug effects , Polymers/administration & dosage , Pyridinium Compounds/administration & dosage , tau Proteins/pharmacology , Animals , Behavior, Animal/drug effects , Calcium Signaling/drug effects , Cells, Cultured , Disease Models, Animal , Electrophysiology/methods , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Learning Disabilities/drug therapy , Male , Neurons/metabolism , Neurons/physiology , Phosphorylation , Polymers/pharmacology , Pyridinium Compounds/pharmacology , Rats, Sprague-Dawley , Recombinant Proteins/administration & dosage , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Tauopathies/metabolism , tau Proteins/administration & dosage , tau Proteins/metabolism
12.
Int J Mol Sci ; 15(3): 4671-713, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24646911

ABSTRACT

Tau protein is abundant in the central nervous system and involved in microtubule assembly and stabilization. It is predominantly associated with axonal microtubules and present at lower level in dendrites where it is engaged in signaling functions. Post-translational modifications of tau and its interaction with several proteins play an important regulatory role in the physiology of tau. As a consequence of abnormal modifications and expression, tau is redistributed from neuronal processes to the soma and forms toxic oligomers or aggregated deposits. The accumulation of tau protein is increasingly recognized as the neuropathological hallmark of a number of dementia disorders known as tauopathies. Dysfunction of tau protein may contribute to collapse of cytoskeleton, thereby causing improper anterograde and retrograde movement of motor proteins and their cargos on microtubules. These disturbances in intraneuronal signaling may compromise synaptic transmission as well as trophic support mechanisms in neurons.


Subject(s)
Neurons/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Cytoskeleton/metabolism , Dementia/metabolism , Humans , Microtubules/metabolism , Models, Biological , Neurons/pathology , Protein Binding , Protein Processing, Post-Translational
13.
Neurobiol Aging ; 34(5): 1380-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23260124

ABSTRACT

The calcyclin binding protein and Siah-1 interacting protein (CacyBP/SIP) protein was shown to play a role in the organization of microtubules. In this work we have examined the neuronal distribution and possible function of CacyBP/SIP in cytoskeletal pathophysiology. We have used brain tissue from Alzheimer's disease (AD) patients and from transgenic mice modeling 2 different pathologies characteristic for AD: amyloid and tau. In the brain from AD patients, CacyBP/SIP was found to be almost exclusively present in neuronal somata, and in control patients it was seen in the somata and neuronal processes. In mice doubly transgenic for amyloid precursor protein and presenilin 1 there was no difference in CacyBP/SIP neuronal localization in comparison with the nontransgenic animals. By contrast in tau transgenic mice, localization of CacyBP/SIP was similar to that observed for AD patients. To find the relation between CacyBP/SIP and tau we examined dephosphorylation of tau by CacyBP/SIP. We found that indeed it exhibited phosphatase activity toward tau. Altogether, our results suggest that CacyBP/SIP might play a role in AD pathology.


Subject(s)
Alzheimer Disease/metabolism , Calcium-Binding Proteins/metabolism , Neurons/metabolism , Nuclear Proteins/metabolism , Subcellular Fractions/metabolism , Ubiquitin-Protein Ligases/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Animals , Humans , Male , Mice , Mice, Transgenic , Tissue Distribution
14.
Behav Brain Res ; 221(2): 515-26, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-20170684

ABSTRACT

Cholinergic neurons of the basal forebrain provide the major cholinergic innervation to the cortex and hippocampus, and play a key role in memory and attentional processes. Dysfunction of basal forebrain cholinergic neurons (BFCN) is a cardinal feature of Alzheimer's disease (AD) and correlates with cognitive decline. Survival of BFCN neurons depends upon binding of nerve growth factor (NGF), which is synthesized and secreted by cells in the cortex and hippocampus, with high-affinity (TrkA) and low-affinity (p75(NTR)) neurotrophin receptors produced within BFCN neurons. NGF released from target cells activates TrkA on axon terminals and triggers activation of PI3K/Akt, MEK/ERK, and PLCγ (phospholipase C) signaling pathways. The signal then travels retrogradely along axon to cell body to promote neuronal survival. However, the nature of the retrograde signal remains mysterious. p75(NTR) receptors could mediate a fundamentally different signaling pathway leading to apoptic cell death. Dysfunction of NGF and its receptors has been suggested to underlie the selective degeneration of the BFCN in end stage Alzheimer disease. In this regard, NGF, the founding member of the neurotrophin family, has generated great interest as a potential target for the treatment of AD. This review focuses on NGF-cholinergic dependency, NGF/receptor binding, signal transduction, retrograde transport, regulation of specific cellular endpoints, and the potential involvement of cytoskeleton dysfunction in defected NGF signaling.


Subject(s)
Cholinergic Fibers/physiology , Cytoskeleton/physiology , Nerve Growth Factor/physiology , Receptors, Nerve Growth Factor/metabolism , Aging/metabolism , Alzheimer Disease/metabolism , Animals , Axonal Transport/physiology , Brain/metabolism , Brain/physiology , Cytoskeleton/metabolism , Humans , Models, Neurological , Neurons/metabolism , Neurons/physiology , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...