Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 453(7192): 175-83, 2008 May 08.
Article in English | MEDLINE | ID: mdl-18464734

ABSTRACT

We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.


Subject(s)
Evolution, Molecular , Genome/genetics , Platypus/genetics , Animals , Base Composition , Dentition , Female , Genomic Imprinting/genetics , Humans , Immunity/genetics , Male , Mammals/genetics , MicroRNAs/genetics , Milk Proteins/genetics , Phylogeny , Platypus/immunology , Platypus/physiology , Receptors, Odorant/genetics , Repetitive Sequences, Nucleic Acid/genetics , Reptiles/genetics , Sequence Analysis, DNA , Spermatozoa/metabolism , Venoms/genetics , Zona Pellucida/metabolism
2.
Genome Res ; 18(6): 965-73, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18463302

ABSTRACT

In therian mammals (placentals and marsupials), sex is determined by an XX female: XY male system, in which a gene (SRY) on the Y affects male determination. There is no equivalent in other amniotes, although some taxa (notably birds and snakes) have differentiated sex chromosomes. Birds have a ZW female: ZZ male system with no homology with mammal sex chromosomes, in which dosage of a Z-borne gene (possibly DMRT1) affects male determination. As the most basal mammal group, the egg-laying monotremes are ideal for determining how the therian XY system evolved. The platypus has an extraordinary sex chromosome complex, in which five X and five Y chromosomes pair in a translocation chain of alternating X and Y chromosomes. We used physical mapping to identify genes on the pairing regions between adjacent X and Y chromosomes. Most significantly, comparative mapping shows that, contrary to earlier reports, there is no homology between the platypus and therian X chromosomes. Orthologs of genes in the conserved region of the human X (including SOX3, the gene from which SRY evolved) all map to platypus chromosome 6, which therefore represents the ancestral autosome from which the therian X and Y pair derived. Rather, the platypus X chromosomes have substantial homology with the bird Z chromosome (including DMRT1) and to segments syntenic with this region in the human genome. Thus, platypus sex chromosomes have strong homology with bird, but not to therian sex chromosomes, implying that the therian X and Y chromosomes (and the SRY gene) evolved from an autosomal pair after the divergence of monotremes only 166 million years ago. Therefore, the therian X and Y are more than 145 million years younger than previously thought.


Subject(s)
Evolution, Molecular , Platypus/genetics , Sex Chromosomes , Animals , Birds/genetics , Chromosomes, Artificial, Bacterial , Chromosomes, Human, X , Genes , Humans , Physical Chromosome Mapping
3.
Chromosome Res ; 15(3): 269-81, 2007.
Article in English | MEDLINE | ID: mdl-17333535

ABSTRACT

The genome of the gray, short-tailed opossum, Monodelphis domestica, will be the first of any marsupial to be fully sequenced. The utility of this sequence will be greatly enhanced by construction and integration of detailed genetic and physical maps. Therefore, it is important to verify the unusual recombinational characteristics that were suggested by the 'first-generation' M. domestica linkage map; specifically, very low levels of recombination and severely reduced female recombination, both of which are contrary to patterns in other vertebrates. We constructed a new linkage map based on a different genetic cross, using a new and much larger set of map markers, and physically anchored and oriented the linkage groups onto chromosomes via fluorescence in-situ hybridization mapping. This map includes 150 loci in eight autosomal linkage groups corresponding to the eight autosome pairs, and spans 86-89% of the autosomal genome. The sex-averaged autosomal map covers 715 cM, with a full-length estimate of 866 cM; the shortest full-length linkage map reported for any vertebrate. The sex-specific maps confirmed severely reduced female recombination in all linkage groups, and an overall F/M map ratio = 0.54. These results greatly extend earlier findings, and provide an improved microsatellite-based linkage map for this species.


Subject(s)
Chromosome Mapping/methods , Microsatellite Repeats , Monodelphis/genetics , Animals , Crosses, Genetic , Female , Genetic Linkage , Genome , In Situ Hybridization, Fluorescence , Male
4.
Chromosome Res ; 15(8): 961-74, 2007.
Article in English | MEDLINE | ID: mdl-18185982

ABSTRACT

Like the unique platypus itself, the platypus genome is extraordinary because of its complex sex chromosome system, and is controversial because of difficulties in identification of small autosomes and sex chromosomes. A 6-fold shotgun sequence of the platypus genome is now available and is being assembled with the help of physical mapping. It is therefore essential to characterize the chromosomes and resolve the ambiguities and inconsistencies in identifying autosomes and sex chromosomes. We have used chromosome paints and DAPI banding to identify and classify pairs of autosomes and sex chromosomes. We have established an agreed nomenclature and identified anchor BAC clones for each chromosome that will ensure unambiguous gene localizations.


Subject(s)
Chromosomes, Mammalian/genetics , Platypus/genetics , Sex Chromosomes/genetics , Animals , Cells, Cultured , Chromosome Banding , Chromosome Mapping , Chromosome Painting , Chromosomes, Artificial, Bacterial , Female , Fibroblasts , Genome , In Situ Hybridization, Fluorescence , Karyotyping , Male , Metaphase
5.
Chromosome Res ; 13(6): 627-36, 2005.
Article in English | MEDLINE | ID: mdl-16170627

ABSTRACT

Marsupials occupy a phylogenetic middle ground that is very valuable in genome comparisons of mammal and other vertebrate species. For this reason, whole genome sequencing is being undertaken for two distantly related marsupial species, including the model kangaroo species Macropus eugenii (the tammar wallaby). As a first step towards the molecular characterization of the tammar genome, we present a detailed description of the tammar karyotype, report the development of a set of molecular anchor markers and summarize the comparative mapping data for this species.


Subject(s)
Chromosomes , Macropodidae/genetics , Animals , Cells, Cultured , Chromosome Banding , Chromosomes, Artificial, Bacterial , In Situ Hybridization, Fluorescence , Karyotyping , Metaphase
SELECTION OF CITATIONS
SEARCH DETAIL
...