Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Stud Mycol ; 107: 149-249, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38600960

ABSTRACT

Based on seven- and three-gene datasets, we discuss four alternative approaches for a reclassification of Fomitopsidaceae (Polyporales, Basidiomycota). After taking into account morphological diversity in the family, we argue in favour of distinguishing three genera only, viz. Anthoporia, Antrodia and Fomitopsis. Fomitopsis becomes a large genus with 128 accepted species, containing almost all former Fomitopsis spp. and most species formerly placed in Antrodia, Daedalea and Laccocephalum. Genera Buglossoporus, Cartilosoma, Daedalea, Melanoporia, Neolentiporus, alongside twenty others, are treated as synonyms of Fomitopsis. This generic scheme allows for morphologically distinct genera in Fomitopsidaceae, unlike other schemes we considered. We provide arguments for retaining Fomitopsis and suppressing earlier (Daedalea, Caloporus) or simultaneously published generic names (Piptoporus) considered here as its synonyms. Taxonomy of nine species complexes in the genus is revised based on ITS, ITS + TEF1, ITS + TEF1 + RPB1 and ITS + TEF1 + RPB2 datasets. In total, 17 species are described as new to science, 26 older species are reinstated and 26 currently accepted species names are relegated to synonymy. A condensed identification key for all accepted species in the genus is provided. Taxonomic novelties: New species: Fomitopsis algumicola Grebenc & Spirin, F. caseosa Vlasák & Spirin, F. cupressicola Vlasák, J. Vlasák Jr. & Spirin, F. derelicta Vlasák & Spirin, F. dollingeri Vlasák & Spirin, F. fissa Vlasák & Spirin, F. lapidosa Miettinen & Spirin, F. lignicolor Vlasák & Spirin, F. maculosa Miettinen & Spirin, F. pannucea Runnel & Spirin, F. perhiemata Viner & Spirin, F. purpurea Spirin & Ryvarden, F. retorrida Spirin & Kotiranta, F. solaris Rivoire, A.M. Ainsworth & Vlasák, F. tristis Miettinen & Spirin, F. tunicata Miettinen & Spirin, F. visenda Miettinen & Spirin. New combinations: Fomitopsis aculeata (Cooke) Spirin & Miettinen, F. aethalodes (Mont.) Spirin, F. alaskana (D.V. Baxter) Spirin & Vlasák, F. albidoides (A. David & Dequatre) Bernicchia & Vlasák, F. amygdalina (Berk. & Ravenel) Spirin & Vlasák, F. angusta (Spirin & Vlasák) Spirin & Vlasák, F. atypa (Lév.) Spirin & Vlasák, F. caespitosa (Murrill) Spirin & Miettinen, F. calcitrosa (Spirin & Miettinen) Spirin & Miettinen, F. circularis (B.K. Cui & Hai J. Li) Spirin, F. concentrica (G. Cunn.) M.D. Barrett, F. cyclopis (Miettinen & Spirin) Miettinen & Spirin, F. dickinsii (Berk. ex Cooke) Spirin, F. elevata (Corner) Spirin & Miettinen, F. eucalypti (Kalchbr.) Spirin, F. ferrea (Cooke) Spirin & Viner, F. flavimontis (Vlasák & Spirin) Vlasák & Spirin, F. foedata (Berk.) Spirin & Miettinen, F. gilvidula (Bres.) Spirin & Miettinen, F. glabricystidia (Ipulet & Ryvarden) Miettinen & Ryvarden, F. globispora (Ryvarden & Aime) Spirin, F. hartmannii (Cooke) M.D. Barrett & Spirin, F. hyalina (Spirin, Miettinen & Kotir.) Spirin & Miettinen, F. hypoxantha (Bres.) Spirin & Miettinen, F. incana (Lév.) Spirin & V. Malysheva, F. infirma (Renvall & Niemelä) Miettinen & Niemelä, F. juniperina (Murrill) Spirin & Vlasák, F. kuzyana (Pilát ex Pilát) Spirin & Vlasák, F. leioderma (Mont.) Spirin & Vlasak, F. leucaena (Y.C. Dai & Niemelä) Spirin & Miettinen, F. luzonensis (Murrill) Spirin & Miettinen, F. maculatissima (Lloyd) Spirin, F. madronae (Vlasák & Ryvarden) Vlasák & Ryvarden, F. malicola (Berk. & M.A. Curtis) Spirin, F. marchionica (Mont.) Spirin & Miettinen, F. marianii (Bres.) Spirin, Vlasák & Cartabia, F. mellita (Niemelä & Penttilä) Niemelä & Miettinen, F. microcarpa (B.K. Cui & Shun Liu) Spirin, F. micropora (B.K. Cui & Shun Liu) Spirin, F. modesta (Kuntze ex Fr.) Vlasák & Spirin, F. monomitica (Yuan Y. Chen) Spirin & Viner, F. morganii (Lloyd) Spirin & Vlasák, F. moritziana (Lév.) Spirin & Miettinen, F. neotropica (D.L. Lindner, Ryvarden & T.J. Baroni) Vlasák, F. nigra (Berk.) Spirin & Miettinen, F. nivosella (Murrill) Spirin & Vlasák, F. oboensis (Decock, Amalfi & Ryvarden) Spirin, F. oleracea (R.W. Davidson & Lombard) Spirin & Vlasák, F. philippinensis (Murrill) Spirin & Vlasák, F. primaeva (Renvall & Niemelä) Miettinen & Niemelä, F. psilodermea (Berk. & Mont.) Spirin & Vlasák, F. pulverulenta (Rivoire) Rivoire, F. pulvina (Pers.) Spirin & Vlasák, F. pulvinascens (Pilát ex Pilát) Niemelä & Miettinen, F. quercina (L.) Spirin & Miettinen, F. ramentacea (Berk. & Broome) Spirin & Vlasák, F. renehenticii (Rivoire, Trichies & Vlasák) Rivoire & Vlasák, F. roseofusca (Romell) Spirin & Vlasák, F. sagraeana (Mont.) Vlasák & Spirin, F. sandaliae (Bernicchia & Ryvarden) Bernicchia & Vlasák, F. sclerotina (Rodway) M.D. Barrett & Spirin, F. serialiformis (Kout & Vlasák) Vlasák, F. serialis (Fr.) Spirin & Runnel, F. serrata (Vlasák & Spirin) Vlasák & Spirin, F. squamosella (Bernicchia & Ryvarden) Bernicchia & Ryvarden, F. stereoides (Fr.) Spirin, F. subectypa (Murrill) Spirin & Vlasák, F. substratosa (Malençon) Spirin & Miettinen, F. tropica (B.K. Cui) Spirin, F. tumulosa (Cooke) M.D. Barrett & Spirin, F. tuvensis (Spirin, Vlasák & Kotir.) Spirin & Vlasák, F. uralensis (Pilát) Spirin & Miettinen, F. ussuriensis (Bondartsev & Ljub.) Spirin & Miettinen, F. variiformis (Peck) Vlasák & Spirin, F. yunnanensis (M.L. Han & Q. An) Spirin, Daedaleopsis candicans (P. Karst.) Spirin, Megasporoporia eutelea (Har. & Pat.) Spirin & Viner, Neofomitella hemitephra (Berk.) M.D. Barrett, Pseudophaeolus soloniensis (Dubois) Spirin & Rivoire, P. trichrous (Berk. & M.A. Curtis) Vlasák & Spirin. New synonyms: Antrodia bondartsevae Spirin, A. huangshanensis Y.C. Dai & B.K. Cui, A. taxa T.T. Chang & W.N. Chou, A. wangii Y.C. Dai & H.S. Yuan, Antrodiella subnigra Oba, Mossebo & Ryvarden, Antrodiopsis Audet, Boletus quercinus Schrad., Brunneoporus Audet, Buglossoporus Kotl. & Pouzar, Buglossoporus eucalypticola M.L. Han, B.K. Cui & Y.C. Dai, Caloporus P. Karst., Cartilosoma Kotlaba & Pouzar, Coriolus clemensiae Murrill, C. cuneatiformis Murrill, C. hollickii Murrill, C. parthenius Hariot & Pat., C. rubritinctus Murrill, Daedalea Pers., Daedalea allantoidea M.L. Han, B.K. Cui & Y.C. Dai, D. americana M.L. Han, Vlasák & B.K. Cui, D. radiata B.K. Cui & Hai J. Li, D. rajchenbergiana Kossmann & Drechsler-Santos, D. sinensis Lloyd, Daedalella B.K. Cui & Shun Liu, Dentiporus Audet, Flavidoporia Audet, Fomes subferreus Murrill, Fomitopsis cana B.K. Cui, Hai J. Li & M.L. Han, F. caribensis B.K. Cui & Shun Liu, F. cystidiata B.K. Cui & M.L. Han, F. ginkgonis B.K. Cui & Shun Liu, F. iberica Melo & Ryvarden, F. incarnata K.M. Kim, J.S. Lee & H.S. Jung, F. subfeei B.K. Cui & M.L. Han, F. subtropica B.K. Cui & Hai J. Li, Fragifomes B.K. Cui, M.L. Han & Y.C. Dai, Leptoporus epileucinus Pilát, Melanoporia Murrill, Neoantrodia Audet, Neolentiporus Rajchenb., Nigroporus macroporus Ryvarden & Iturr., Niveoporofomes B.K. Cui, M.L. Han & Y.C. Dai, Pilatoporus Kotl. & Pouzar, Piptoporus P. Karst., Polyporus aurora Ces., P. durescens Overh. ex J. Lowe, P. griseodurus Lloyd, Poria incarnata Pers., Pseudoantrodia B.K. Cui, Y.Y. Chen & Shun Liu, Pseudofomitopsis B.K. Cui & Shun Liu, Ranadivia Zmitr., Rhizoporia Audet, Rhodofomes Kotl. & Pouzar, Rhodofomitopsis B.K. Cui, M.L. Han & Y.C. Dai, Rhodofomitopsis pseudofeei B.K. Cui & Shun Liu, R. roseomagna Nogueira-Melo, A.M.S. Soares & Gibertoni, Rubellofomes B.K. Cui, M.L. Han & Y.C. Dai, Subantrodia Audet, Trametes fulvirubida Corner, T. lignea Murrill, T. lusor Corner, T. pseudodochmia Corner, T. subalutacea Bourdot & Galzin, T. supermodesta Ryvarden & Iturr., T. tuberculata Bres., Tyromyces multipapillatus Corner, T. ochraceivinosus Corner, T. palmarum Murrill, T. singularis Corner, T. squamosellus Núñez & Ryvarden, Ungulidaedalea B.K. Cui, M.L. Han & Y.C. Dai. Lectotypes: Hexagonia sulcata Berk., Polyporus castaneae Bourdot & Galzin, Poria incarnata Pers., Trametes subalutacea Bourdot & Galzin, Ungulina substratosa Malençon. Neotypes: Agaricus soloniensis Dubois, Boletus pulvinus Pers. Citation: Spirin V, Runnel K, Vlasák J, Viner I, Barrett MD, Ryvarden L, Bernicchia A, Rivoire B, Ainsworth AM, Grebenc T, Cartabia M, Niemelä T, Larsson K-H, Miettinen O (2024). The genus Fomitopsis (Polyporales, Basidiomycota) reconsidered. Studies in Mycology 107: 149-249. doi: 10.3114/sim.2024.107.03.

2.
Fungal Syst Evol ; 12: 271-322, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38455955

ABSTRACT

Cerrenaceae is a small family of polypores and hydnoid fungi in the order Polyporales (Basidiomycota). The family consists of white-rot fungi, some of which are serious tree pathogens. Combining morphological evidence with a phylogenetic dataset of six genetic markers, we revise generic concepts in the family and propose a seven-genus classification system for the family. Two genera are introduced as new: the monotypic Acanthodontia for Radulodon cirrhatinus, and Lividopora for the Rigidoporus vinctus complex. We re-introduce the name Somion for the Spongipellis delectans complex. Other recognized genera in the family are Cerrena, Irpiciporus, Pseudolagarobasidium, and Radulodon. New species introduced are Irpiciporus branchiformis from Tanzania, Lividopora armeniaca, and L. facilis from Southeast Asia, and Somion strenuum from East Asia. We provide nomenclatural comments on all the names combined to the above Cerrenaceae genera and typify Cerrena unicolor, C. zonata, Polyporus carneopallens (= L. vincta), Somion occarium, and S. unicolor. The genus Hyphoradulum belongs to Cystostereaceae (Agaricales), and we transfer the type species H. conspicuum to Crustomyces. Our study highlights the importance of integrating different basidiocarp types in analyses when revising genus classification in macrofungi. Citation: Miettinen O, Vlasák J, Larsson E, Vlasák J Jr., Seelan JSS, Hernawati, Levicky Q, Larsson K-H, Spirin V (2023). A revised genus-level classification for Cerrenaceae (Polyporales, Agaricomycetes). Fungal Systematics and Evolution 12: 271-322. doi: 10.3114/fuse.2023.12.14.

3.
Stud Mycol ; 106: 41-94, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38298570

ABSTRACT

Mycoparasites in Basidiomycota comprise a diverse group of fungi, both morphologically and phylogenetically. They interact with their hosts through either fusion-interaction or colacosome-interaction. Colacosomes are subcellular structures formed by the mycoparasite at the host-parasite interface, which penetrate the parasite and host cell walls. Previously, these structures were detected in 19 fungal species, usually by means of transmission electron microscopy. Most colacosome-forming species have been assigned to Microbotryomycetes (Pucciniomycotina, Basidiomycota), a highly diverse class, comprising saprobic yeasts, mycoparasites, and phytoparasites. In general, these myco- and phytoparasites are dimorphic organisms, with a parasitic filamentous morph and saprobic yeast morph. We investigated colacosome-forming mycoparasites based on fungarium material, freshly collected specimens, and cultures of yeast morphs. We characterised the micromorphology of filamentous morphs, the physiological characteristics of yeast morphs, and inferred phylogenetic relationships based on DNA sequence data from seven loci. We outline and employ an epifluorescence-based microscopic method to assess the presence and organisation of colacosomes. We describe five new species in the genus Colacogloea, the novel dimorphic mycoparasite Mycogloiocolax gerardii, and provide the first report of a sexual, mycoparasitic morph in Colacogloea philyla and in the genus Slooffia. We detected colacosomes in eight fungal species, which brings the total number of known colacosome-forming fungi to 27. Finally, we revealed three distinct types of colacosome organisation in Microbotryomycetes. Taxonomic novelties and typifications: New family: Mycogloiocolacaeae Schoutteten & Yurkov; New genus: Mycogloiocolax Schoutteten & Rödel; New species: Colacogloea bettinae Schoutteten & Begerow, C. biconidiata Schoutteten, C. fennica Schoutteten & Miettinen, C. microspora Schoutteten, C. universitatis-gandavensis Schoutteten & Verbeken, Mycogloiocolax gerardii Schoutteten & Rödel; New combinations: Slooffia micra (Bourdot & Galzin) Schoutteten, Fellozyma cerberi (A.M. Yurkov et al.) Schoutteten & Yurkov, Fellozyma telluris (A.M. Yurkov et al.) Schoutteten & Yurkov; Epitypifications (basionyms): Achroomyces insignis Hauerslev, Platygloea micra Bourdot & Galzin, Platygloea peniophorae Bourdot & Galzin; Lectotypification (basionym): Platygloea peniophorae Bourdot & Galzin Citation: Schoutteten N, Yurkov A, Leroux O, Haelewaters D, Van Der Straeten D, Miettinen O, Boekhout T, Begerow D, Verbeken A (2023). Diversity of colacosome-interacting mycoparasites expands the understanding of the evolution and ecology of Microbotryomycetes. Studies in Mycology 106: 41-94. doi: 10.3114/sim.2022.106.02.

4.
Fungal Syst Evol ; 10: 103-126, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36789282

ABSTRACT

The genus Dendrodacrys is a monophyletic group that belongs to Dacrymycetes (Agaricomycotina, Basidiomycota) and accommodates species distinguished by strongly branched hyphidia in combination with 3-septate basidiospores. While the original circumscription mainly treated European taxa, here we shift the focus to tropical and sub-tropical material and uncover wider variation in morphology within Dendrodacrys. Still united by hyphidia shape and basidiospore septation, the genus is expanded with 10 taxa having pustulate, cerebriform, or stipitate basidiocarps of yellow to dark brown colours, cylindrical to ovoid basidiospores, and hyphal septa with or without clamps. Monophyly of the amended Dendrodacrys is confirmed with a phylogeny based on six markers (SSU, ITS, LSU, TEF1-α, RPB1, and RPB2). As a result, we describe two new species (De. laetum and De. rigoratum), transfer three existing species to Dendrodacrys (De. brasiliense, De. dendrocalami, and De. pezizoideum), and raise one variety to the species level (De. kennedyae ≡ Dacrymyces enatus var. macrosporus). In addition, we provide descriptions for the earlier combined De. paraphysatum and four new informal taxa. Lastly, we present illustrations, a character table, and an identification key that addresses all known dacrymycetes with branched hyphidia. Citation: Savchenko A, Zamora JC, Alvarenga R, Kõljalg U, Miettinen O (2022). Additions to Dendrodacrys and outline of taxa with branched hyphidia in Dacrymycetes (Basidiomycota). Fungal Systematics and Evolution 10: 103-126. doi: 10.3114/fuse.2022.10.04.

5.
Stud Mycol ; 99: 100117, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34934464

ABSTRACT

Cerinomyces (Dacrymycetes, Basidiomycota) is a genus traditionally defined by corticioid basidiocarps, in contrast to the rest of the class, which is characterized by gelatinous ones. In the traditional circumscription the genus is polyphyletic, and the monotypic family Cerinomycetaceae is paraphyletic. Aiming for a more concise delimitation, we revise Cerinomyces s.l. with a novel phylogeny based on sequences of nrDNA (SSU, ITS, LSU) and protein-coding genes (RPB1, RPB2, TEF1-α). We establish that monophyletic Cerinomyces s.s. is best characterized not by the corticioid morphology, but by a combination of traits: hyphal clamps, predominantly aseptate thin-walled basidiospores, and low content of carotenoid pigments. In our updated definition, Cerinomyces s.s. encompasses five well-supported phylogenetic clades divided into two morphological groups: (i-iii) taxa with arid corticioid basidiocarps, including the generic type C. pallidus; and (iv-v) newly introduced members with gelatinous basidiocarps, like Dacrymyces enatus and D. tortus. The remaining corticioid species of Cerinomyces s.l. are morphologically distinct and belong to the Dacrymycetaceae: our analysis places the carotenoid-rich Cerinomyces canadensis close to Femsjonia, and we transfer the clamps-lacking C. grandinioides group to Dacrymyces. In addition, we address genera related to Cerinomyces s.l. historically and morphologically, such as Ceracea, Dacryonaema and Unilacryma. Overall, we describe twenty-four new species and propose nine new combinations in both Cerinomycetaceae and Dacrymycetaceae.

6.
Fungal Syst Evol ; 8: 163-178, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35005580

ABSTRACT

We studied a number of sub-Saharan collections of corticioid Xylodon and Lyomyces species, including several types. Morphological descriptions and molecular analyses based on the ribosomal DNA loci nuc rDNA ITS1-5.8S-ITS2 and when possible nuc 28S rDNA, allow us to introduce four new species: L. densiusculus, X. angustisporus, X. dissiliens, and X. laxiusculus. DNA barcodes for X. submucronatus and X. pruniaceus are published for the first time and X. pruniaceus is re-described.

7.
Fungal Syst Evol ; 4: 77-96, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32467908

ABSTRACT

The genus name Hydnoporia is reinstated to encompass the Hymenochaete tabacina group currently addressed to Pseudochaete (illegitimate genus) or Hymenochaetopsis. Identity of the type species of Hydnoporia, Sistotrema fuscescens (= Hydnoporia olivacea in current sense), is clarified, and a lectotype is selected. In total, 12 species are combined in Hydnoporia: H. corrugata, H. gigasetosa, H. lamellata, H. laricicola, H. latesetosa, H. lenta, H. rhododendri, H. rimosa, H. subrigidula, H. tabacina, H. tabacinoides, and H. yasudai. Hydnoporia diffissa is described as new. Analyses of all available ITS (94) and newly produced tef1 sequences (20) indicate that there are at least 20-27 species in the genus. Identity of the type species of Hymenochaete, H. rubiginosa, is clarified; the name is retained for the species so named in Europe while other species are present in North America and East Asia. Additionally, three new combinations in Hymenochaete are proposed: H. campylopora (= Cyclomyces fuscus), H. microcycla (= Cyclomyces tabacinus), and H. saepiaria.

8.
Fungal Syst Evol ; 2: 311-340, 2018 Dec.
Article in English | MEDLINE | ID: mdl-32467892

ABSTRACT

The taxonomy of the corticioid fungi from the class Atractiellomycetes (Pucciniomycotina, Basidiomycetes) currently addressed to the genus Helicogloea, is revised based on morphological and nuclear ribosomal DNA (ITS and LSU) data. The genus is restricted to 25 species with semitranslucent, gelatinous basidiocarps lacking differentiated cystidia and clamps on hyphae, of which 11 are described as new to science. The asexual genus Leucogloea is placed as a synonym of Helicogloea s. str. Since the type species of Saccoblastia, S. ovispora, is combined to Helicogloea, a new genus, Saccosoma, is introduced to encompass Saccoblastia farinacea and six related species, one of which is described as new. In contrast to Helicogloea in the strict sense, the basidiocarps of Saccosoma are arid, not gelatinized, and hyphae are clamped. The third lineage of the corticioid Atractiellomycetes is represented by the Bourdotigloea vestita complex. Species of Bourdotigloea are devoid of clamps but often possess well-differentiated cystidia, as well as long, cylindrical-fusiform basidiospores. Bourdotigloea encompasses nine species, of which six are described here as new.

9.
Fungal Syst Evol ; 1: 101-129, 2018 Jun.
Article in English | MEDLINE | ID: mdl-32490363

ABSTRACT

Taxonomy of the Postia caesia complex is revised based on morphology and two genetic markers, ITS and tef1. In total, we recognize 24 species, multiplying the known species diversity in the complex. We provide descriptions for 20 temperate Northern Hemisphere taxa. Identity of the core species, P. caesia, is re-established, and a neotype from the type locality is selected. Four new combinations are proposed, and 10 new species are described: P. arbuti, P. auricoma, P. bifaria, P. comata, P. cyanescens, P. glauca, P. livens, P. magna, P. populi, and P. yanae.

10.
11.
Eur J Epidemiol ; 25(10): 671-5, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20623323

ABSTRACT

Understanding of the logic-dictated essence of the etiologic study, and similarly that of the intervention-study, in the advancement of the knowledge-base of medicine, remains incomplete. Viewing experimental intervention-studies ('clinical trials') as paradigmatic for etiologic studies-necessarily non-experimental-has been wrongheaded. This misunderstanding continues to impede understanding of the essence of what logic dictates to be the etiologic study, adduced decades ago but still commonly confused with the essence of the (seriously malformed) 'case-control' study. Correct understanding of the essence of the etiologic study would pave the way to improved understanding of the intervention study, notably as to how prognostic probability functions could be derived from the data now routinely produced in clinical trials. This paradigm reversal, too, has been previously proposed, but its understanding has remained fogged by wanting understanding of the etiologic study.


Subject(s)
Epidemiologic Studies , Clinical Trials as Topic , Humans , Proportional Hazards Models
12.
Eur J Epidemiol ; 25(6): 365-74, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20458523

ABSTRACT

A recent article (by Esserman et al.) called to serious question the diagnostic and prognostic premises of screening for breast and prostate cancers, and it proceeded to adduce, also, other radical rethinking of these screenings. That questioning was 'evidence-based' in the contemporary epidemiological meaning of this--use was made of cancer-registry data as well as of evidence from such randomized trials as epidemiologists now take to be essential in actual research on screening for a cancer--and, evidence-based as it was, that questioning has been left unquestioned. But that questioning, as to the interpretation of the evidence, was not adequately thinking-based. It was, instead, rife with the misunderstandings that permeate contemporary epidemiological thinking about screening for a cancer and about research for the scientific knowledge-base of this. In the truly called-for rethinking, the point of departure would be the recognition that the premises of screening for a cancer are clinical in nature, as obviously also are both the entire process potentially leading to a cancer's early, preclinical diagnosis and the individual counselling about submitting oneself to this. Epidemiologists should focus on epidemiology--practice of and research for community medicine, community-level preventive medicine, that is--and to have no presumptions of understanding, better than clinicians, the (clinical) issues surrounding the pursuit of early diagnosis of a cancer, whether matters of practice, research, or public policy. Clinicians and clinical researchers, in turn, should disregard epidemiologists'--and other public-health professionals'--ideas about screening for a cancer, the practice of and research on this. The need for this aprioristic rethinking is manifest, very eminently, in the fresh recommendations about screening for breast cancer, issued by the US Preventive Services Task Force, and in the public uproar provoked by these.


Subject(s)
Breast Neoplasms/diagnosis , Prostatic Neoplasms/diagnosis , Age Factors , Aged , Breast Neoplasms/prevention & control , Data Interpretation, Statistical , Early Detection of Cancer/methods , Early Detection of Cancer/standards , Evidence-Based Medicine , Female , Humans , Incidence , Male , Middle Aged , Prostatic Neoplasms/prevention & control , Unnecessary Procedures
13.
Eur J Epidemiol ; 25(2): 149, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20091092
16.
Radiology ; 221(3): 592-6; discussion 597, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11719649

ABSTRACT

The practicing radiologist today is well persuaded that earlier diagnosis of lung cancer can be achieved with traditional-type radiography and especially with modern computed tomography. The practitioner also is confident that intervention in the context of earlier diagnosis is more effective in preventing death due to this otherwise fatal disease. The practitioner is thus inclined to consider such screening in a high-risk person with suitably long life expectancy, especially when asked to provide it. On the other hand, the practitioner is aware of official recommendations against lung cancer screening, said to be based on demonstrated lack of effectiveness of traditional radiographic screening. Some researchers have expressed concerns about screening-associated "overdiagnosis." Given this dilemma, the critically thinking practitioner is concerned to understand the foundation of the official nihilism in evidence and reasoning, as she or he suspects that something may be seriously wrong in this. This article is an attempt to help such a practitioner in this effort--an effort that in the end is rewarded by the comforting realization that the nihilistic recommendations and hesitation-provoking cautions are founded on pseudoevidence and specious reasoning.


Subject(s)
Lung Neoplasms/diagnostic imaging , Tomography, X-Ray Computed , Humans , Lung Neoplasms/mortality , Lung Neoplasms/therapy , Randomized Controlled Trials as Topic , Risk Factors , Survival Rate
17.
CMAJ ; 165(6): 781-2, 2001 Sep 18.
Article in English | MEDLINE | ID: mdl-11584568
18.
CMAJ ; 165(7): 910-1, 2001 Oct 02.
Article in English | MEDLINE | ID: mdl-11599332
SELECTION OF CITATIONS
SEARCH DETAIL
...