Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e16115, 2023.
Article in English | MEDLINE | ID: mdl-38025748

ABSTRACT

Mass bleaching events and local anthropogenic influences have changed the benthic communities of many coral reefs with pronounced spatial differences that are linked to resilience patterns. The Gulf of Thailand is an under-investigated region with only few existing datasets containing long-term developments of coral reef communities using the same method at fixed sites. We thus analyzed benthic community data from seven reefs surrounding the island of Koh Phangan collected between 2014 and 2022. Findings revealed that the average live hard coral cover around Koh Phangan increased from 37% to 55% over the observation period, while turf algae cover decreased from 52% to 29%, indicating some recovery of local reefs. This corresponds to a mean increased rate of coral cover by 2.2% per year. The increase in live hard coral cover was mainly driven by plate-like corals, which quadrupled in proportion over the last decade from 7% to 28% while branching corals decreased in proportion from 9% to 2%. Furthermore, the hard coral genus richness increased, indicating an increased hard coral diversity. While in other reefs, increasing live hard coral cover is often attributed to fast-growing, branching coral species, considered more susceptible to bleaching and other disturbances, the reefs around Koh Phangan recovered mainly via growth of plate-like corals, particularly of the genus Montipora. Although plate-like morphologies are not necessarily more bleaching tolerant, they are important for supporting reef fish abundance and structural complexity on reefs, aiding reef recovery and sturdiness. Hence, our findings indicate that the intensity of local stressors around Kho Phangan allows reef recovery driven by some hard coral species.


Subject(s)
Anthozoa , Animals , Thailand , Coral Reefs , Fishes
2.
PLoS One ; 16(12): e0260516, 2021.
Article in English | MEDLINE | ID: mdl-34874982

ABSTRACT

Coral recruitment and successive growth are essential for post-disturbance reef recovery. As coral recruit and juvenile abundances vary across locations and under different environmental regimes, their assessment at remote, undisturbed reefs improves our understanding of early life stage dynamics of corals. Here, we first explored changes in coral juvenile abundance across three locations (lagoon, seaward west and east) at remote Aldabra Atoll (Seychelles) between 2015 and 2019, which spanned the 2015/16 global coral bleaching event. Secondly, we measured variation in coral recruit abundance on settlement tiles from two sites (lagoon, seaward reef) during August 2018-August 2019. Juvenile abundance decreased from 14.1 ± 1.2 to 7.4 ± 0.5 colonies m-2 (mean ± SE) during 2015-2016 and increased to 22.4 ± 1.2 colonies m-2 during 2016-2019. Whilst juvenile abundance increased two- to three-fold at the lagoonal and seaward western sites during 2016-2018 (from 7.7-8.3 to 17.3-24.7 colonies m-2), increases at the seaward eastern sites occurred later (2018-2019; from 5.8-6.9 to 16.6-24.1 colonies m-2). The composition of coral recruits on settlement tiles was dominated by Pocilloporidae (64-92% of all recruits), and recruit abundance was 7- to 47-fold higher inside than outside the lagoon. Recruit abundance was highest in October-December 2018 (2164 ± 453 recruits m-2) and lowest in June-August 2019 (240 ± 98 recruits m-2). As Acroporid recruit abundance corresponded to this trend, the results suggest that broadcast spawning occurred during October-December, when water temperature increased from 26 to 29°C. This study provides the first published record on coral recruit abundance in the Seychelles Outer Islands, indicates a rapid (2-3 years) increase of juvenile corals following a bleaching event, and provides crucial baseline data for future research on reef resilience and connectivity within the region.


Subject(s)
Anthozoa/classification , Anthozoa/growth & development , Animals , Coral Bleaching/prevention & control , Coral Bleaching/statistics & numerical data , Coral Reefs , Global Warming , Phylogeny , Seychelles
3.
Sci Rep ; 10(1): 17034, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046828

ABSTRACT

Documenting post-bleaching trajectories of coral reef communities is crucial to understand their resilience to climate change. We investigated reef community changes following the 2015/16 bleaching event at Aldabra Atoll, where direct human impact is minimal. We combined benthic data collected pre- (2014) and post-bleaching (2016-2019) at 12 sites across three locations (lagoon, 2 m depth; seaward west and east, 5 and 15 m depth) with water temperature measurements. While seaward reefs experienced relative hard coral reductions of 51-62%, lagoonal coral loss was lower (- 34%), probably due to three-fold higher daily water temperature variability there. Between 2016 and 2019, hard coral cover did not change on deep reefs which remained dominated by turf algae and Halimeda, but absolute cover on shallow reefs increased annually by 1.3% (east), 2.3% (west) and 3.0% (lagoon), reaching, respectively, 54%, 68% and 93% of the pre-bleaching cover in 2019. Full recovery at the shallow seaward locations may take at least five more years, but remains uncertain for the deeper reefs. The expected increase in frequency and severity of coral bleaching events is likely to make even rapid recovery as observed in Aldabra's lagoon too slow to prevent long-term reef degradation, even at remote sites.


Subject(s)
Anthozoa/growth & development , Climate Change , Coral Reefs , Animals , Hot Temperature , Seychelles
4.
Sci Rep ; 10(1): 8897, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483234

ABSTRACT

Coral reefs in the wider Caribbean declined in hard coral cover by ~80% since the 1970s, but spatiotemporal analyses for sub-regions are lacking. Here, we explored benthic change patterns in the Mexican Caribbean reefs through meta-analysis between 1978 and 2016 including 125 coral reef sites. Findings revealed that hard coral cover decreased from ~26% in the 1970s to 16% in 2016, whereas macroalgae cover increased to ~30% in 2016. Both groups showed high spatiotemporal variability. Hard coral cover declined in total by 12% from 1978 to 2004 but increased again by 5% between 2005 and 2016 indicating some coral recovery after the 2005 mass bleaching event and hurricane impacts. In 2016, more than 80% of studied reefs were dominated by macroalgae, while only 15% were dominated by hard corals. This stands in contrast to 1978 when all reef sites surveyed were dominated by hard corals. This study is among the first within the Caribbean region that reports local recovery in coral cover in the Caribbean, while other Caribbean reefs have failed to recover. Most Mexican Caribbean coral reefs are now no longer dominated by hard corals. In order to prevent further reef degradation, viable and reliable conservation alternatives are required.


Subject(s)
Anthozoa/growth & development , Seaweed/growth & development , Animals , Caribbean Region , Coral Reefs , Mexico , Population Density , Spatio-Temporal Analysis
5.
PLoS One ; 12(2): e0170101, 2017.
Article in English | MEDLINE | ID: mdl-28146561

ABSTRACT

Predator-prey interactions can affect the behaviour of the species involved, with consequences for population distribution and competitive interactions. Under predation pressure, potential prey may adopt evasive strategies. These responses can be costly and could impact population growth. As some prey species may be more affected than others, predation pressure could also alter the dynamics among species within communities. In field cages and small observation cages, we studied the interactions between a generalist predator, the African weaver ant, Oecophylla longinoda, two species of fruit flies that are primary pests of mango fruits, Ceratitis cosyra and Bactrocera dorsalis, and their two exotic parasitoids, Fopius arisanus and Diachasmimorpha longicaudata. In all experiments, either a single individual (observation cage experiments) or groups of individuals (field cage experiments) of a single species were exposed to foraging in the presence or absence of weaver ants. Weaver ant presence reduced the number of eggs laid by 75 and 50 percent in B. dorsalis and C. cosyra respectively. Similarly, parasitoid reproductive success was negatively affected by ant presence, with success of parasitism reduced by around 50 percent for both F. arisanus and D. longicaudata. The negative effect of weaver ants on both flies and parasitoids was mainly due to indirect predation effects. Encounters with weaver ant workers increased the leaving tendency in flies and parasitoids, thus reduced the time spent foraging on mango fruits. Parasitoids were impacted more strongly than fruit flies. We discuss how weaver ant predation pressure may affect the population dynamics of the fruit flies, and, in turn, how the alteration of host dynamics could impact parasitoid foraging behaviour and success.


Subject(s)
Ants/physiology , Host-Parasite Interactions , Mangifera/parasitology , Animals , Diptera/physiology , Predatory Behavior , Tephritidae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...