Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(11): 7974-7985, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36866780

ABSTRACT

The development of new electrochromic materials and devices, like smart windows, has an enormous impact on the energy efficiency of modern society. One of the crucial materials in this technology is nickel oxide. Ni-deficient NiO shows anodic electrochromism, whose mechanism is still under debate. We use DFT+U calculations to show that Ni vacancy generation results in the formation of hole polarons localized at the two oxygens next to the vacancy. In the case of NiO bulk, upon Li insertion or injection of an extra electron into Ni-deficient NiO, one hole gets filled, and the hole bipolaron is converted into a hole polaron well-localized at one O atom, resulting from the transition between oxidized (colored) to reduced (bleached) state. In the case of the Ni-deficient NiO(001) surface, the qualitatively same picture is obtained upon embedding Li, Na, and K into the Ni surface vacancy, reinforcing the conclusion that the electron injection, resulting in the filling of the hole states, is responsible for the modulation of the optical properties of NiO. Hence, our results suggest a new mechanism of Ni-deficient NiO electrochromism not related to the change of the Ni oxidation states, i.e., the Ni2+/Ni3+ transition, but based on the formation and annihilation of hole polarons in oxygen p-states.

2.
Phys Chem Chem Phys ; 16(20): 9479-89, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24724155

ABSTRACT

By means of ab initio calculations we have revealed the existence of sizable anisotropy in electronic properties of anatase TiO2 nanowires with respect to orientation: nanowires with 〈001〉, 〈100〉 and 〈110〉 axes are found to be direct band-gap, indirect band-gap and degenerate semiconductor materials, respectively. The degenerate semiconducting properties of 〈110〉-oriented TiO2 nanowires are predicted to be the intrinsic features closely connected with stoichiometry. A band-gap variation with nanowire diameter is also shown to display rather complex behavior characterized by a competition between quantum confinement and surface state effects that is fully compatible with the available contradictory experimental data. Finally, we propose a model to explain the band-gap variation with size in TiO2 nanowires, nanocrystals and thin films.

3.
Phys Chem Chem Phys ; 16(20): 9490-8, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24724154

ABSTRACT

In the first part [D. B. Migas et al., Phys. Chem. Chem. Phys., 2014, DOI: 10.1039/C3CP54988G] by means of ab initio calculations we have analyzed and discussed anisotropy effects on electronic properties of 〈001〉-, 〈100〉- and 〈110〉-oriented anatase TiO2 nanowires. In this part we present results indicating crucial changes in morphology of anatase TiO2 nanotubes originating from TiO2 nanowires by making a hole along the wire axis. The critical wall thickness has been found to exist for the nanotubes with 〈001〉 and 〈110〉 axes: at smaller thickness their shape can be rounded, squeezed, viewed as conglomerates of nanocrystals and even represented as cylindrical and 'single-walled'-like structures formed without rolling up a thin titania layer into a nanotube. In general, band dispersion near the gap region of TiO2 nanotubes is close to the one of TiO2 nanowires with the same orientation. We have also revealed that optimization of the unit cell parameter along the wire axis and consideration of quantum confinement and surface state effects are important to provide an interpretation of band-gap variation with respect to wall thickness in TiO2 nanotubes.

SELECTION OF CITATIONS
SEARCH DETAIL
...