Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 97(4): 1677-82, 2000 Feb 15.
Article in English | MEDLINE | ID: mdl-10677517

ABSTRACT

A cDNA for a second mouse mitochondrial carbonic anhydrase (CA) called CA VB was identified by homology to the previously characterized murine CA V, now called CA VA. The full-length cDNA encodes a 317-aa precursor that contains a 33-aa classical mitochondrial leader sequence. Comparison of products expressed from cDNAs for murine CA VB and CA VA in COS cells revealed that both expressed active CAs that localized in mitochondria, and showed comparable activities in crude extracts and in mitochondria isolated from transfected COS cells. Northern blot analyses of total RNAs from mouse tissues and Western blot analyses of mouse tissue homogenates showed differences in tissue-specific expression between CA VB and CA VA. CA VB was readily detected in most tissues, while CA VA expression was limited to liver, skeletal muscle, and kidney. The human orthologue of murine CA VB was recently reported also. Comparison of the CA domain sequence of human CA VB with that reported here shows that the CA domains of CA VB are much more highly conserved between mouse and human (95% identity) than the CA domains of mouse and human CA VAs (78% identity). Analysis of phylogenetic relationships between these and other available human and mouse CA isozyme sequences revealed that mammalian CA VB evolved much more slowly than CA VA, accepting amino acid substitutions at least 4.5 times more slowly since each evolved from its respective human-mouse ancestral gene around 90 million years ago. Both the differences in tissue distribution and the much greater evolutionary constraints on CA VB sequences suggest that CA VB and CA VA have evolved to assume different physiological roles.


Subject(s)
Carbonic Anhydrases/metabolism , Mitochondria/enzymology , Amino Acid Sequence , Animals , COS Cells , Carbonic Anhydrases/genetics , Cloning, Molecular , Cytosol/enzymology , Evolution, Molecular , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Molecular Sequence Data , Phylogeny , RNA, Messenger/metabolism , Sequence Homology, Amino Acid , Transfection
2.
Proc Natl Acad Sci U S A ; 97(5): 2214-9, 2000 Feb 29.
Article in English | MEDLINE | ID: mdl-10681454

ABSTRACT

Hereditary hemochromatosis (HH) is a common autosomal recessive disorder characterized by excess absorption of dietary iron and progressive iron deposition in several tissues, particularly liver. Liver disease resulting from iron toxicity is the major cause of death in HH. Hepatic iron loading in HH is progressive despite down-regulation of the classical transferrin receptor (TfR). Recently a human cDNA highly homologous to TfR was identified and reported to encode a protein (TfR2) that binds holotransferrin and mediates uptake of transferrin-bound iron. We independently identified a full-length murine EST encoding the mouse orthologue of the human TfR2. Although homologous to murine TfR in the coding region, the TfR2 transcript does not contain the iron-responsive elements found in the 3' untranslated sequence of TfR mRNA. To determine the potential role for TfR2 in iron uptake by liver, we investigated TfR and TfR2 expression in normal mice and murine models of dietary iron overload (2% carbonyl iron), dietary iron deficiency (gastric parietal cell ablation), and HH (HFE -/-). Northern blot analyses demonstrated distinct tissue-specific patterns of expression for TfR and TfR2, with TfR2 expressed highly only in liver where TfR expression is low. In situ hybridization demonstrated abundant TfR2 expression in hepatocytes. In contrast to TfR, TfR2 expression in liver was not increased in iron deficiency. Furthermore, hepatic expression of TfR2 was not down-regulated with dietary iron loading or in the HFE -/- model of HH. From these observations, we propose that TfR2 allows continued uptake of Tf-bound iron by hepatocytes even after TfR has been down-regulated by iron overload, and this uptake contributes to the susceptibility of liver to iron loading in HH.


Subject(s)
Hemochromatosis/metabolism , Liver/metabolism , Receptors, Transferrin/metabolism , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary , Disease Models, Animal , Gene Expression , Hemochromatosis/genetics , Humans , Iron/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Data , RNA, Messenger/metabolism , Receptors, Transferrin/genetics , Sequence Homology, Amino Acid , Tissue Distribution
3.
Proc Natl Acad Sci U S A ; 96(6): 3143-8, 1999 Mar 16.
Article in English | MEDLINE | ID: mdl-10077651

ABSTRACT

Hereditary hemochromatosis (HH) is a common autosomal recessive disorder characterized by tissue iron deposition secondary to excessive dietary iron absorption. We recently reported that HFE, the protein defective in HH, was physically associated with the transferrin receptor (TfR) in duodenal crypt cells and proposed that mutations in HFE attenuate the uptake of transferrin-bound iron from plasma by duodenal crypt cells, leading to up-regulation of transporters for dietary iron. Here, we tested the hypothesis that HFE-/- mice have increased duodenal expression of the divalent metal transporter (DMT1). By 4 weeks of age, the HFE-/- mice demonstrated iron loading when compared with HFE+/+ littermates, with elevated transferrin saturations (68.4% vs. 49.8%) and elevated liver iron concentrations (985 micrograms vs. 381 micrograms). By using Northern blot analyses, we quantitated duodenal expression of both classes of DMT1 transcripts: one containing an iron responsive element (IRE), called DMT1(IRE), and one containing no IRE, called DMT1(non-IRE). The positive control for DMT1 up-regulation was a murine model of dietary iron deficiency that demonstrated greatly increased levels of duodenal DMT1(IRE) mRNA. HFE-/- mice also demonstrated an increase in duodenal DMT1(IRE) mRNA (average 7.7-fold), despite their elevated transferrin saturation and hepatic iron content. Duodenal expression of DMT1(non-IRE) was not increased, nor was hepatic expression of DMT1 increased. These data support the model for HH in which HFE mutations lead to inappropriately low crypt cell iron, with resultant stabilization of DMT1(IRE) mRNA, up-regulation of DMT1, and increased absorption of dietary iron.


Subject(s)
Carrier Proteins/biosynthesis , Cation Transport Proteins , Duodenum/metabolism , Hemochromatosis/metabolism , Iron-Binding Proteins , Iron/metabolism , Animals , Carrier Proteins/genetics , Hemochromatosis/genetics , Mice , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...