Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37375422

ABSTRACT

The simplest way to eliminate microorganisms in the must/wine is through sulfuration, as it allows the introduction of pure yeast varieties into the must, which guarantees a high-quality wine. However, sulfur is an allergen, and an increasing number of people are developing allergies to it. Therefore, alternative methods for microbiological stabilization of must and wine are being sought. Consequently, the aim of the experiment was to evaluate the effectiveness of ionizing radiation in eliminating microorganisms in must. The sensitivity of wine yeasts, Saccharomyces cerevisiae, S. cerevisiae var. bayanus, Brettanomyces bruxellensis, and wild yeasts to ionizing radiation was com-pared. The effects of these yeasts on wine chemistry and quality were also determined. Ionizing radiation eliminates yeast in wine. A dose of 2.5 kGy reduced the amount of yeast by more than 90% without reducing the quality of the wine. However, higher doses of radiation worsened the organoleptic properties of the wine. The breed of yeast used has a very strong influence on the quality of the wine. It is justifiable to use commercial yeast breeds to obtain standard-quality wine. The use of special strains, e.g., B. bruxellensis, is also justified when aiming to obtain a unique product during vinification. This wine was reminiscent of wine produced with wild yeast.. The wine fermented with wild yeast had a very poor chemical composition, which negatively affected its taste and aroma. The high content of 2-methylbutanol and 3-methylbutanol caused the wine to have a nail polish remover smell.


Subject(s)
Saccharomyces cerevisiae , Wine , Humans , Wine/analysis , Food Microbiology , Fermentation , Plant Breeding , Allergens
2.
Food Microbiol ; 98: 103782, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33875210

ABSTRACT

Electrons with energies of 300 keV or lower have the potential to decontaminate the surfaces of various types of food products with minimal loss of quality. The aim of the present work was to determine the thickness of the layer inhabited by microorganisms. The food samples tested were black and white pepper irradiated with 200 keV, 230 keV, 300 keV and 9 MeV beams of electron energy. To determine the depth from the surface which can be inhabited by microorganisms two approaches were tested. The methods used were based on the application of different microbiological recovery techniques and the microbial effectiveness of the irradiation process depending on the energy of the electron beam. It was observed that the layer which microorganisms may contaminate differed for the tested samples it was estimated as being below 100 µm thick for white pepper and about 200 µm for black pepper. The penetration ability was significant in experiments performed, and as a result the electron beam at the lowest levels tested (200 and 230 keV) was found to be insufficient to effectively decontaminate the black pepper samples. The beam of energy 300 keV was found to have a similar microbial inactivation effect as the high energy electron beam (9 MeV).


Subject(s)
Bacteria/radiation effects , Food Contamination/prevention & control , Food Irradiation/methods , Piper nigrum/microbiology , Bacteria/growth & development , Bacteria/isolation & purification , Electrons , Food Contamination/analysis , Food Irradiation/instrumentation , Microbial Viability/radiation effects , Piper nigrum/radiation effects , Vegetables/microbiology , Vegetables/radiation effects
3.
Molecules ; 24(18)2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31546827

ABSTRACT

Potassium metabisulphite is usually used for microbial stabilization in the process of vinification and wine preservation, but it is considered to be allergenic. The objective of the present study was to assess the efficiency of ozonation and ionizing radiation as alternatives to wine sulphurization. The efficiency of yeast removal and the retention of the chemical quality of wine were evaluated. Wine was subjected to 60 min of ozonation, and radiation doses were set at 1-10 kGy. Moreover, a combination of ozonation and ionizing radiation treatment was used. The ozonation of wine did not produce the expected results. That is, it did not limit the number of yeast cells. From the sixth minute, a significant deterioration in the taste and the color of the wine was found. Ionizing radiation at a dose of 1 kGy reduced the yeast count by 95.5%, and a reduction of 99.9% was seen after the application of 2.5 kGy. Moreover, these doses did not have a significant effect on the organoleptic properties or the chemical composition of wine. The total amount of polyphenols reduced from the maximum of 1127.15 to 1023.73 mg at the dose of 5 kGy. Radiation is widely used to preserve food products. Its use for finished wine preservation may be an alternative to sulphurization.


Subject(s)
Electrons , Food Preservation , Ozone/chemistry , Sulfur/chemistry , Wine/analysis , Microbial Viability/drug effects , Sensation , Sulfites/pharmacology , Time Factors , Wine/microbiology , Yeasts/drug effects
4.
Recent Pat Nanotechnol ; 2(3): 201-7, 2008.
Article in English | MEDLINE | ID: mdl-19076054

ABSTRACT

Nanotechnology is one of the fastest developing new areas in science and technology. Ionizing radiation is widely applied for nanostructure synthesis and nanomaterials modification. The ability to fabricate structures with nanometric precision is of fundamental importance to any exploitation of nanotechnology. Nanofabrication involves various lithographies to write extremely small structures. An interesting field of radiation nanotechnological application concerns the development of nano-ordered hydrogels for biosensors. New trends and more precise treatment technology were applied: surface curing and modification, polymer functionalization are good examples of such developments. Patents on application of ionizing radiation in nanotechnology focused on many different approaches to this topic, not only nanoparticles synthesis but also nanostructure modification or functionalization.


Subject(s)
Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/instrumentation , Nanotechnology/trends , Patents as Topic , Radiation, Ionizing
SELECTION OF CITATIONS
SEARCH DETAIL
...