Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Voice ; 35(5): 805.e1-805.e15, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33388229

ABSTRACT

This study investigates the effect of the ventricular folds on fundamental frequency (fo) in the voice production of domestic pigs (Sus scrofa domesticus). The excised larynges of six subadult pigs were phonated in two preparation stages, with the ventricular folds present (PS1) and removed (PS2). Vocal fold resonances were tested with a laser vibrometer, and a four-mass computational model was created. Highly significant fo differences were found between PS1 and PS2 (means at 93.7 and 409.3 Hz, respectively). Two tissue resonances were found at 115 Hz and 250-290 Hz. The computational model had unique solutions for abducted and adducted ventricular folds at about 150 and 400 Hz, roughly matching the fo measured ex vivo for PS1 and PS2. The differing fo encountered across preparation stages PS1 and PS2 is explained by distinct activation of either a high or a low eigenfrequency mode, depending on the engagement of the ventricular folds. The inability of the investigated larynges to vibrate at frequencies below 250 Hz in PS2 suggests that in vivo low-frequency calls of domestic pigs (pre-eminently grunts) are likely produced with engaged ventricular folds. Allometric comparison suggests that the special, mechanically coupled "double oscillator" has evolved to prevent signaling disadvantages. Given these traits, the porcine larynx might - apart from special applications relating to the involvement of ventricular folds - not be an ideal candidate for emulating human voice production in excised larynx experimentation.


Subject(s)
Larynx , Voice , Animals , Phonation , Sus scrofa , Swine , Vibration , Vocal Cords/surgery
2.
J Acoust Soc Am ; 146(2): 983, 2019 08.
Article in English | MEDLINE | ID: mdl-31472538

ABSTRACT

Under certain conditions, e.g., singing voice, the fundamental frequency of the vocal folds can go up and interfere with the formant frequencies. Acoustic feedback from the vocal tract filter to the vocal fold source then becomes strong and non-negligible. An experimental study was presented on such source-filter interaction using three types of synthetic vocal fold models. Asymmetry was also created between the left and right vocal folds. The experiment reproduced various nonlinear phenomena, such as frequency jump and quenching, as reported in humans. Increase in phonation threshold pressure was also observed when resonant frequency of the vocal tract and fundamental frequency of the vocal folds crossed each other. As a combined effect, the phonation threshold pressure was further increased by the left-right asymmetry. Simulation of the asymmetric two-mass model reproduced the experiments to some extent. One of the intriguing findings of this study is the variable strength of the source-filter interaction over different model types. Among the three models, two models were strongly influenced by the vocal tract, while no clear effect of the vocal tract was observed in the other model. This implies that the level of source-filter interaction may vary considerably from one subject to another in humans.


Subject(s)
Acoustics/instrumentation , Models, Biological , Vocal Cords/physiology , Biomimetic Materials/chemistry , Phonation , Silicones/chemistry , Transducers , Voice
SELECTION OF CITATIONS
SEARCH DETAIL
...