Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 17578, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266468

ABSTRACT

Progressive age is the single major risk factor for neurodegenerative diseases. Cellular aging markers during Parkinson's disease (PD) have been implicated in previous studies, however the majority of studies have investigated the association of individual cellular aging hallmarks with PD but not jointly. Here, we have studied the association of PD with three aging hallmarks (telomere attrition, mitochondrial dysfunction, and cellular senescence) in blood and the brain tissue. Our results show that PD patients had 20% lower mitochondrial DNA copies but 26% longer telomeres in blood compared to controls. Moreover, telomere length in blood was positively correlated with medication (Levodopa Equivalent Daily Dose, LEDD) and disease duration. Similar results were found in brain tissue, where patients with Parkinson's disease (PD), Parkinson's disease dementia (PDD) and Dementia with Lewy Bodies (DLB) showed (46-95%) depleted mtDNA copies, but (7-9%) longer telomeres compared to controls. In addition, patients had lower mitochondrial biogenesis (PGC-1α and PGC-1ß) and higher load of a cellular senescence marker in postmortem prefrontal cortex tissue, with DLB showing the highest effect among the patient groups. Our results suggest that mitochondrial dysfunction (copy number and biogenesis) in blood might be a valuable marker to assess the risk of PD. However, further studies with larger sample size are needed to evaluate these findings.


Subject(s)
Dementia , Lewy Body Disease , Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/complications , Lewy Body Disease/genetics , Dementia/etiology , Organelle Biogenesis , Levodopa , Cellular Senescence/genetics , DNA, Mitochondrial/genetics , Telomere/genetics
2.
Sci Rep ; 11(1): 18733, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34548530

ABSTRACT

Cellular aging is difficult to study in individuals with natural infection, given the diversity of symptom duration and clinical presentation, and the high interference of aging-related processes with host and environmental factors. To address this challenge, we took advantage of the controlled human malaria infection (CHMI) model. This approach allowed us to characterize the relationship among cellular aging markers prior, during and post malaria pathophysiology in humans, controlling for infection dose, individual heterogeneity, previous exposure and co-infections. We demonstrate that already low levels of Plasmodium falciparum impact cellular aging by inducing high levels of inflammation and redox-imbalance; and that cellular senescence reversed after treatment and parasite clearance. This study provides insights into the complex relationship of telomere length, cellular senescence, telomerase expression and aging-related processes during a single malaria infection.


Subject(s)
Biomarkers/metabolism , Cellular Senescence , Malaria, Falciparum/pathology , Humans , Models, Biological
3.
PLoS Negl Trop Dis ; 13(5): e0007414, 2019 05.
Article in English | MEDLINE | ID: mdl-31136585

ABSTRACT

A reduction in the global burden of malaria over the past two decades has encouraged efforts for regional malaria elimination. Despite the need to target all Plasmodium species, current focus is mainly directed towards Plasmodium falciparum, and to a lesser extent P. vivax. There is a substantial lack of data on both global and local transmission patterns of the neglected malaria parasites P. malariae and P. ovale spp. We used a species-specific real-time PCR assay targeting the Plasmodium 18s rRNA gene to evaluate temporal trends in the prevalence of all human malaria parasites over a 22-year period in a rural village in Tanzania.We tested 2897 blood samples collected in five cross-sectional surveys conducted between 1994 and 2016. Infections with P. falciparum, P. malariae, and P. ovale spp. were detected throughout the study period, while P. vivax was not detected. Between 1994 and 2010, we found a more than 90% reduction in the odds of infection with all detected species. The odds of P. falciparum infection was further reduced in 2016, while the odds of P. malariae and P. ovale spp. infection increased 2- and 6-fold, respectively, compared to 2010. In 2016, non-falciparum species occurred more often as mono-infections. The results demonstrate the persistent transmission of P. ovale spp., and to a lesser extent P. malariae despite a continued decline in P. falciparum transmission. This illustrates that the transmission patterns of the non-falciparum species do not necessarily follow those of P. falciparum, stressing the need for attention towards non-falciparum malaria in Africa. Malaria elimination will require a better understanding of the epidemiology of P. malariae and P. ovale spp. and improved tools for monitoring the transmission of all Plasmodium species, with a particular focus towards identifying asymptomatic carriers of infection and designing appropriate interventions to enhance malaria control.


Subject(s)
Malaria/epidemiology , Malaria/parasitology , Plasmodium falciparum/physiology , Plasmodium malariae/physiology , Plasmodium ovale/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , DNA, Protozoan/genetics , Female , Humans , Infant , Malaria/transmission , Male , Middle Aged , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Plasmodium malariae/genetics , Plasmodium malariae/isolation & purification , Plasmodium ovale/genetics , Plasmodium ovale/isolation & purification , Prevalence , RNA, Ribosomal, 18S/genetics , Real-Time Polymerase Chain Reaction , Tanzania/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...