Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Health Sci Eng ; 19(2): 1435-1445, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34900278

ABSTRACT

PURPOSE: Pollution of surface water and groundwater by bulky molecules such as pesticides has been recognized as a major problem in many countries due to their persistence in aquatic environment and potential adverse health effects. The main purpose of this study is the development of a capable adsorbent to remove these bulky molecules from wastewater such as the pesticide Mesosulfuron-Methyl (MM) by reducing the diffusion path, to overcome the problems of diffusional limitations on microporous adsorbents. METHODS: The adsorption of mesosulfuron-methyl (MM) from aqueous solution is curried out using treated acid HY zeolite. Batch sorption equilibrium and kinetic experiments are conducted to evaluate the efficiency of these materials. Parent zeolites and their derivatives have been characterized by nitrogen adsorption-desorption, pyridine chemisorption followed by infrared spectroscopy and X-ray fluorescence. RESULTS: The acid treatment leads to an increase in the specific surface from 691 to 853 m2 g- 1 for HY(30) and from 631 to 806 m2 g- 1 for the HY(16.6) zeolites. It also leads to a reduction in Lewis acidity from 74 to 25 µmol g- 1 and from 135 to 31 µmol g- 1 for HY(30) and HY(16.6) zeolites respectively, and increases the adsorbent-adsorbate interaction. The adsorption capacity increased from 83 to 99 % after acid treatment. The equilibrium adsorption time is decreased from 15 h to 10 min for the HY(30)_A and from 20 h to 20 min for the HY(16.6)_A for an initial concentration of 20 mg L- 1. The adsorption capacity depends on the pH solution, and the neutral form of the MM is more easily adsorbed into zeolite than the dissociated form via the framework bridged oxygen atoms. For all the samples, the pseudo-second-order kinetic model fits very well with the experimental data. In the case of the modified zeolites, the approaching equilibrium factor R w decreases from 0.08183 to 0.00008 when the Lewis acid sites decrease; indicating that the equilibrium is reached more quickly. S-shape adsorption isotherms indicates that cooperative adsorption phenomena. Nevertheless, the shape of acid treated zeolites evolves to an L type indicating a significant enhancement of the adsorbent - adsorbate interactions inducing better adsorption efficiency. CONCLUSIONS: Mesosulfuron-methyl adsorption has been successfully enhanced after acid treatments of zeolites HY.

2.
Sci Rep ; 11(1): 2090, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483564

ABSTRACT

In the present study, the potato peel waste (PP) was used for the removal of the anionic dye Cibacron Blue P3R from an aqueous solution, activated with phosphoric acid (PPa) and calcined at 800 °C (PPc). The materials were characterized by Scanning Electron Microscope, Energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy. The effects of various experimental parameters (pH, dye concentration, contact time) were also studied. The experimental results have shown that PPc has a greater capacity compared to pp and ppa. The capacity of PP bio-char (PPc) is 270.3 mg g-1 compared to PP (100 mg g-1) and PPa (125 mg g-1). Equilibrium experiments at 180 min for all materials were carried out at optimum pH (2.2): 76.41, 88.6 and 94% for PP, PPa and PPc respectively; and the Langmuir models agreed very well with experimental data. The ability of sorbent for the sorption of CB dye follows this order: calcined > activated > native materials. Potato peel biochar (PPc) can be considered a promising adsorbent for removing persistent dyes from water.

3.
J Hazard Mater ; 201-202: 107-14, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-22169242

ABSTRACT

The ability of various as-prepared and organically modified MCM-41 and HMS mesoporous silica materials to behave as efficient adsorbents for organic pollutants in aqueous solution was investigated by using different surface functionalization procedures, so as to adjust their hydrophilic/hydrophobic balance. The hydrophilic and organophilic properties of the parent silica materials and their corresponding surface functionalized counterparts were studied by using water and toluene adsorption isotherms. Their quantification was determined by the hydrophobic static index value (HI(static)), as well as by the silanol and organic group densities after the functionalization step. A clear correlation could be found between the HI(static) values and either the superficial silanol density, or the amount of organic moieties grafted or incorporated to the silica materials. For the highly organically functionalized samples, the residual superficial silanol groups (<50%) are sufficiently isolated from each other so as to prevent the water capillary condensation within the pores, thereby leading to an increased hydrophobic character of the resulting mesoporous silica. Those hydrophobic samples, for which the water liquid meniscus formation within the mesopores was minimized or avoided, exhibited a storage capacity for an organic pollutant (N,N-diethyl-m-toluamide, DEET) in aqueous solution more than 20 times higher than that of the corresponding unmodified sample, independently of the silica nature (MCM-41 or HMS). For all calcined and silylated samples, the DEET maximum adsorption capacities determined by the Langmuir model could be correlated with the silica surface coverage by trimethylsilyl groups and thus with the remaining silanol amount.


Subject(s)
DEET/isolation & purification , Silicon Dioxide/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Chromatography, High Pressure Liquid , Differential Thermal Analysis , Hydrophobic and Hydrophilic Interactions , Porosity , Surface Properties , X-Ray Diffraction
4.
J Phys Chem B ; 114(13): 4465-70, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20225843

ABSTRACT

A thermodynamic study was realized by competitive adsorption over zeolitic adsorbents to determine the efficiency of these solids for the separation of monobranched and dibranched isomers of n-hexane. The effect of the zeolite structure was studied. The medium-pores ZSM-5-type zeolites were better than the large-pores BEA and MOR zeolites. The size and number of the extraframework cations had an important influence on the efficiency of the separation over ZSM-5 zeolites. The sodic Na(6)ZSM-5 sample was found to be the better adsorbent for the separation of the studied mixture because of steric hindrance induced by the presence of Na(+) cations in the zeolite structure. The initial composition of the mixture also had an important influence on the separation. In fact, when the initial mixture was equimolar the monobranched isomer was preferentially adsorbed, whereas when the molar percentages of the isomers were different in the initial mixture the adsorption of the majority isomer was favored. The temperature of the adsorption was another important parameter influencing the separation. Indeed, when the temperature of adsorption was low the separation was more effective. At an adsorption temperature of 333 K the Na(6)ZSM-5 sample was the most efficient by adsorbing 65% of the monobranched isomer and only 35% of the dibranched isomer.

SELECTION OF CITATIONS
SEARCH DETAIL
...