Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Med Eng Phys ; 117: 103994, 2023 07.
Article in English | MEDLINE | ID: mdl-37331749

ABSTRACT

The impact of ethanol locks on the mechanical performances of central venous catheters was compared to that of aqueous-based locks. Several mechanical tests were performed to evaluate catheter behavior: kinking radius measurements, burst pressure, and tensile tests. Different polyurethanes were studied to assess the impact of radio-opaque charge and polymer chemical composition on catheter behavior. The results were correlated to swelling measurements and calorimetric measurements. In particular, ethanol locks have a higher impact on long contact time than aqueous-based locks: stresses and strains at break were lower, and kinking radii were higher. However, for all catheters, the mechanical performances remain much higher than the normative requirements.


Subject(s)
Catheter-Related Infections , Central Venous Catheters , Humans , Polyurethanes/chemistry , Ethanol/chemistry
2.
J Biomed Mater Res B Appl Biomater ; 111(6): 1182-1196, 2023 06.
Article in English | MEDLINE | ID: mdl-36705442

ABSTRACT

This article investigates the impact of the interactions between polyurethane central venous catheters and solutions containing excipients used in cisplatin and paclitaxel formulations. Changes to the properties of catheters and the leaching of catheter additives into the infused solutions were studied while these solutions were infused cyclically for several months. Chemotherapy treatment was mimicked in vitro in compliance with hospital practices. The treatment cycle was repeated 10 times, using solutions containing only the excipients. After 10 treatment cycles, no physical or chemical degradation of the catheter was observed. Mechanical performances were stable, but surface modifications occurred, causing the surface to become more hydrophobic. A loss in polyurethane antioxidant amount was observed in part due to a leaching phenomenon.


Subject(s)
Catheterization, Central Venous , Central Venous Catheters , Polyurethanes/chemistry , Excipients , Hydrophobic and Hydrophilic Interactions
3.
Mol Ecol ; 30(7): 1721-1735, 2021 04.
Article in English | MEDLINE | ID: mdl-33559274

ABSTRACT

Sexual dimorphism in plants may emerge as a result of sex-specific selection on traits enhancing access to nutritive resources and/or to sexual partners. Here we investigated sex-specific differences in selection of sexually dimorphic traits and in the spatial distribution of effective fecundity (our fitness proxy) in a highly dimorphic dioecious wind-pollinated shrub, Leucadendron rubrum. In particular, we tested for the effect of density on male and female effective fecundity. We used spatial and genotypic data of parent and offspring cohorts to jointly estimate individual male and female effective fecundity on the one hand and pollen and seed dispersal kernels on the other hand. This methodology was adapted to the case of dioecious species. Explicitly modelling dispersal avoids the confounding effects of heterogeneous spatial distribution of mates and sampled seedlings on the estimation of effective fecundity. We also estimated selection gradients on plant traits while modelling sex-specific spatial autocorrelation in fecundity. Males exhibited spatial autocorrelation in effective fecundity at a smaller scale than females. A higher local density of plants was associated with lower effective fecundity in males but was not related to female effective fecundity. These results suggest sex-specific sensitivities to environmental heterogeneity in L. rubrum. Despite these sexual differences, we found directional selection for wider canopies and smaller leaves in both sexes, and no sexually antagonistic selection on strongly dimorphic traits in L. rubrum. Many empirical studies in animals similarly failed to detect sexually antagonistic selection in species expressing strong sexual dimorphism, and we discuss reasons explaining this common pattern.


Subject(s)
Proteaceae , Sex Characteristics , Animals , Female , Fertility/genetics , Male , Phenotype , Wind
4.
Evol Appl ; 9(1): 196-211, 2016 01.
Article in English | MEDLINE | ID: mdl-27087848

ABSTRACT

We advocate the advantage of an evolutionary approach to conservation biology that considers evolutionary history at various levels of biological organization. We review work on three separate plant taxa, spanning from one to multiple decades, illustrating extremes in metapopulation functioning. We show how the rare endemics Centaurea corymbosa (Clape Massif, France) and Brassica insularis in Corsica (France) may be caught in an evolutionary trap: disruption of metapopulation functioning due to lack of colonization of new sites may have counterselected traits such as dispersal ability or self-compatibility, making these species particularly vulnerable to any disturbance. The third case study concerns the evolution of life history strategies in the highly diverse genus Leucadendron of the South African fynbos. There, fire disturbance and the recolonization phase after fires are so integral to the functioning of populations that recruitment of new individuals is conditioned by fire. We show how past adaptation to different fire regimes and climatic constraints make species with different life history syndromes more or less vulnerable to global changes. These different case studies suggest that management strategies should promote evolutionary potential and evolutionary processes to better protect extant biodiversity and biodiversification.

5.
Ann Bot ; 117(3): 507-19, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26772770

ABSTRACT

BACKGROUND AND AIMS: The pseudometallophyte Noccaea caerulescens is an excellent model to study evolutionary processes, as it grows both on normal and on heavy-metal-rich, toxic soils. The evolution and demography of populations are critically impacted by mating system and, yet, information about the N. caerulescens mating system is limited. METHODS: Mean selfing rates were assessed using microsatellite loci and a robust estimation method (RMES) in five metallicolous and five non-metallicolous populations of N. caerulescens in Southern France, and this measure was replicated for two successive reproductive seasons. As a part of the study, the patterns of gene flow among populations were analysed. The mating system was then characterized at a fine spatial scale in three populations using the MLTR method on progeny arrays. KEY RESULTS: The results confirm that N. caerulescens has a mixed mating system, with selfing rates ranging from 0·2 to 0·5. Selfing rates did not vary much among populations within ecotypes, but were lower in the metallicolous than in the non-metallicolous ecotype, in both seasons. Effective population size was also lower in non-metallicolous populations. Biparental inbreeding was null to moderate. Differentiation among populations was generally high, but neither ecotype nor isolation by distance explained it. CONCLUSIONS: The consequences of higher selfing rates on adaptation are expected to be weak to moderate in non-metallicolous populations and they are expected to suffer less from inbreeding depression, compared to metallicolous populations.


Subject(s)
Brassicaceae/drug effects , Brassicaceae/physiology , Metals/toxicity , Self-Fertilization/physiology , Ecotype , France , Genetic Variation , Geography , Models, Biological , Population Density , Sample Size , Seasons , Self-Fertilization/drug effects
6.
Evolution ; 68(10): 2775-92, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24957971

ABSTRACT

Natural selection is expected to cause convergence of life histories among taxa as well as correlated evolution of different life-history traits. Here, we quantify the extent of convergence of five key life-history traits (adult fire survival, seed storage, degree of sexual dimorphism, pollination mode, and seed-dispersal mode) and test hypotheses about their correlated evolution in the genus Leucadendron (Proteaceae) from the fire-prone South African fynbos. We reconstructed a new molecular phylogeny of this highly diverse genus that involves more taxa and molecular markers than previously. This reconstruction identifies new clades that were not detected by previous molecular study and morphological classifications. Using this new phylogeny and robust methods that account for phylogenetic uncertainty, we show that the five life-history traits studied were labile during the evolutionary history of the genus. This diversity allowed us to tackle major questions about the correlated evolution of life-history strategies. We found that species with longer seed-dispersal distances tended to evolve lower pollen-dispersal distance, that insect-pollinated species evolved decreased sexual dimorphism, and that species with a persistent soil seed-bank evolved toward reduced fire-survival ability of adults.


Subject(s)
Biological Evolution , Phylogeny , Proteaceae/classification , Proteaceae/physiology , DNA, Plant/genetics , Likelihood Functions , Pollination/genetics , Seed Dispersal/genetics , Sequence Analysis, DNA
7.
Mol Phylogenet Evol ; 70: 37-46, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23948865

ABSTRACT

Despite the recent advances in generating molecular data, reconstructing species-level phylogenies for non-models groups remains a challenge. The use of a number of independent genes is required to resolve phylogenetic relationships, especially for groups displaying low polymorphism. In such cases, low-copy nuclear exons and non-coding regions, such as 3' untranslated regions (3'-UTRs) or introns, constitute a potentially interesting source of nuclear DNA variation. Here, we present a methodology meant to identify new nuclear orthologous markers using both public-nucleotide databases and transcriptomic data generated for the group of interest by using next generation sequencing technology. To identify PCR primers for a non-model group, the genus Leucadendron (Proteaceae), we adopted a framework aimed at minimizing the probability of paralogy and maximizing polymorphism. We anchored when possible the right-hand primer into the 3'-UTR and the left-hand primer into the coding region. Seven new nuclear markers emerged from this search strategy, three of those included 3'-UTRs. We further compared the phylogenetic potential between our new markers and the ribosomal internal transcribed spacer region (ITS). The sequenced 3'-UTRs yielded higher polymorphism rates than the ITS region did. We did not find strong incongruences with the phylogenetic signal contained in the ITS region and the seven new designed markers but they strongly improved the phylogeny of the genus Leucadendron. Overall, this methodology is efficient in isolating orthologous loci and is valid for any non-model group given the availability of transcriptomic data.


Subject(s)
Phylogeny , Proteaceae/genetics , Cell Nucleus/genetics , DNA, Plant/genetics , Genetic Markers , High-Throughput Nucleotide Sequencing , Polymorphism, Genetic , Sequence Analysis, DNA , Transcriptome
8.
Conserv Biol ; 22(1): 216-21, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18254866

ABSTRACT

Self-incompatibility systems prevent self-fertilization in angiosperms. Although numerous S alleles are usually maintained by negative frequency-dependent selection, the number of S alleles can be low in small populations, which limits mate availability and reduces fecundity in endangered populations of self-incompatible plants. Despite the increasing evidence of the negative effect of self-incompatibility in small populations, the direct link between the number and the distribution of S alleles and their reproductive consequences has been rarely reported. Brassica insularis is a rare self-incompatible species with medium to very small populations. Results of a previous study showed that the smallest population has very few S alleles. We investigated whether reduced mate availability affects reproduction in this species. We compared the pollination success and the fruit set in 4 populations differing in population size and number of S alleles. Our results suggest that reproduction may be negatively affected by the low S-allele diversity in the smallest population. Nevertheless, other populations also had reduced fruit set that could not be attributed to self-incompatibility alone.


Subject(s)
Brassica/physiology , Conservation of Natural Resources , Fruit , Pollen , Population Density , Reproduction
9.
Genetics ; 171(1): 279-89, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15944365

ABSTRACT

Self-incompatibility (SI) systems are widespread mechanisms that prevent self-fertilization in angiosperms. They are generally encoded by one genome region containing several multiallelic genes, usually called the S-locus. They involve a recognition step between the pollen and the pistil component and pollen is rejected when it shares alleles with the pistil. The direct consequence is that rare alleles are favored, such that the S-alleles are subject to negative frequency-dependent selection. Several theoretical articles have predicted the specific patterns of polymorphism, compared to neutral loci, expected for such genes under balancing selection. For instance, many more alleles should be maintained and populations should be less differentiated than for neutral loci. However, empirical tests of these predictions in natural populations have remained scarce. Here, we compare the genetic structure at the S-locus and microsatellite markers for five natural populations of the rare species Brassica insularis. As in other Brassica species, B. insularis has a sporophytic SI system for which molecular markers are available. Our results match well the theoretical predictions and constitute the first general comparison of S-allele and neutral polymorphism.


Subject(s)
Brassica/genetics , Selection, Genetic , Alleles , Blotting, Western , Brassica/metabolism , Fertility/genetics , France , Gene Frequency , Genetic Variation , Genetics, Population , Genotype , Geography , Glycoproteins/genetics , Glycoproteins/metabolism , Models, Genetic , Plant Proteins/genetics , Plant Proteins/metabolism
10.
Genetics ; 168(3): 1601-14, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15579710

ABSTRACT

The fine-scale pattern of correlated paternity was characterized within a population of the narrow-endemic model plant species, Centaurea corymbosa, using microsatellites and natural progeny arrays. We used classical approaches to assess correlated mating within sibships and developed a new method based on pairwise kinship coefficients to assess correlated paternity within and among sibships in a spatio-temporal perspective. We also performed numerical simulations to assess the relative significance of different mechanisms promoting correlated paternity and to compare the statistical properties of different estimators of correlated paternity. Our new approach proved very informative to assess which factors contributed most to correlated paternity and presented good statistical properties. Within progeny arrays, we found that about one-fifth of offspring pairs were full-sibs. This level of correlated mating did not result from correlated pollen dispersal events (i.e., pollen codispersion) but rather from limited mate availability, the latter being due to limited pollen dispersal distances, the heterogeneity of pollen production among plants, phenological heterogeneity and, according to simulations, the self-incompatibility system. We point out the close connection between correlated paternity and the "TwoGener" approach recently developed to infer pollen dispersal and discuss the conditions to be met when applying the latter.


Subject(s)
Centaurea/genetics , Genetics, Population , Computer Simulation , Genetic Markers , Genotype , Microsatellite Repeats
11.
Am J Bot ; 89(3): 393-400, 2002 Mar.
Article in English | MEDLINE | ID: mdl-21665634

ABSTRACT

In most flowering plants, a single cytokinesis follows the two meiotic divisions during pollen-grain ontogeny. Aperture pattern (i.e., aperture number and distribution on pollen surface) ontogeny could be linked to the processes ensuring the apportionment of the cytoplasm to the four microspores.This apportionment is achieved by radial arrays of microtubules organized around the nuclei. The cleavage planes are defined in the overlapping regions of opposing arrays extending from different nuclei. We followed the establishment of these arrays in two different lines of plants belonging to the genus Nicotiana that produce pollen grains with different aperture numbers. Different distributions of the microtubules have been observed, which can be interpreted as resulting from variation in the interactions between nuclei; these distributions appear to be correlated with aperture number.As a consequence, we propose that simultaneous cytokinesis allows the formation of multiple pollen morphologies. This mechanism is consistent with aperture number distribution within angiosperms and provides clues to help our understanding of the evolution of aperture number.

SELECTION OF CITATIONS
SEARCH DETAIL
...