Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36768672

ABSTRACT

Approximately 10 million individuals have blindness due to limbal stem cell (LSCs) deficiency, one of the most challenging problems in ophthalmology. To replenish the LSC pool, an autologous extraocular cell source is appropriate, thereby avoiding the risk of immune rejection, the need for immunosuppression and the risk of damaging the contralateral eye. In recent years, adipose-derived mesenchymal stem cells (ADSCs) have been a key element in ocular regenerative medicine. In this study, we developed a protocol for deriving human LSCs from ADSCs compatible with the standard carrier human amniotic membrane, helping provide a stem cell pool capable of maintaining proper corneal epithelial homeostasis. The best protocol included an ectodermal induction step by culturing ADSCs with media containing fetal bovine serum, transforming growth factor-ß inhibitor SB-505124, Wnt inhibitor IWP-2 and FGF2 for 7 days, followed by an LSC induction step of culture in modified supplemental hormonal epithelial medium supplemented with pigment epithelium-derived factor and keratinocyte growth factor for 10 additional days. The optimal differentiation efficiency was achieved when cells were cultured in this manner over vitronectin coating, resulting in up to 50% double-positive αp63/BMI-1 cells. The results of this project will benefit patients with LSC deficiency, aiding the restoration of vision.


Subject(s)
Limbus Corneae , Mesenchymal Stem Cells , Humans , Adult , Limbal Stem Cells , Cornea , Stem Cells/metabolism , Cells, Cultured
2.
World J Stem Cells ; 3(6): 53-62, 2011 Jun 26.
Article in English | MEDLINE | ID: mdl-21860670

ABSTRACT

AIM: To study the ability of human adipose-derived mesenchymal stem cells (AMSCs) to survive over the short and long term, their biodistribution and their biosafety in vivo in tumor-prone environments. METHODS: We subcutaneously injected human AMSCs from different human donors into immunodeficient SCID mice over both short- (2 and 4 mo) and long- (17 mo) term in young, and aged tumor-prone mice. Presence of human cells was studied by immunohistochemistry and polymerase chain reaction analysis in all organs of injected mice. RESULTS: Subcutaneously injected AMSCs did not form teratomas at any time point. They did not migrate but remained at the site of injection regardless of animal age, and did not fuse with host cells in any organ examined. AMSCs survived in vivo for at least 17 mo after injection, and differentiated into fibroblasts of the subdermic connective tissue and into mature adipocytes of fat tissue, exclusively at the site of injection. CONCLUSION: Our results support the assertion that AMSC may be safe candidates for therapy when injected subcutaneously because of their long term inability to form teratomas.

SELECTION OF CITATIONS
SEARCH DETAIL
...