Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Biol ; 84: e277974, 2024.
Article in English | MEDLINE | ID: mdl-38808784

ABSTRACT

Maize (Zea mays L.) is of socioeconomic importance as an essential food for human and animal nutrition. However, cereals are susceptible to attack by mycotoxin-producing fungi, which can damage health. The methods most commonly used to detect and quantify mycotoxins are expensive and time-consuming. Therefore, alternative non-destructive methods are required urgently. The present study aimed to use near-infrared spectroscopy with hyperspectral imaging (NIR-HSI) and multivariate image analysis to develop a rapid and accurate method for quantifying fumonisins in whole grains of six naturally contaminated maize cultivars. Fifty-eight samples, each containing 40 grains, were subjected to NIR-HSI. These were subsequently divided into calibration (38 samples) and prediction sets (20 samples) based on the multispectral data obtained. The averaged spectra were subjected to various pre-processing techniques (standard normal variate (SNV), first derivative, or second derivative). The most effective pre-treatment performed on the spectra was SNV. Partial least squares (PLS) models were developed to quantify the fumonisin content. The final model presented a correlation coefficient (R2) of 0.98 and root mean square error of calibration (RMSEC) of 508 µg.kg-1 for the calibration set, an R2 of 0.95 and root mean square error of prediction (RMSEP) of 508 µg.kg-1 for the test validation set and a ratio of performance to deviation of 4.7. It was concluded that NIR-HSI with partial least square regression is a rapid, effective, and non-destructive method to determine the fumonisin content in whole maize grains.


Subject(s)
Fumonisins , Hyperspectral Imaging , Spectroscopy, Near-Infrared , Zea mays , Zea mays/chemistry , Fumonisins/analysis , Spectroscopy, Near-Infrared/methods , Hyperspectral Imaging/methods , Reproducibility of Results , Chemometrics/methods
2.
Environ Monit Assess ; 117(1-3): 157-72, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16917705

ABSTRACT

Intense mining activities in Minas Gerais State - Brazil brings out tons of waste to the environment. Considerable concentrations of toxic elements penetrate the soil, ground waters and rivers. This endangers the environment quality not only in the surrounding areas but also in ichthyofauna and in more distant areas of cattle raising and agricultural activities. After seasonal floods, veterinary clinic studies have shown that most animals raised in this region are affected by symptomatologic nervous diseases, still not clearly diagnosed, which suggests intoxication. These pathologies are mostly noted after floods. Instrumental Neutron Activation Analysis was applied to determine Al, As, Au, Ba, Br, Ca, Cl, Co, Cr, Cs, Cu, Fe, Hg, K, La, Mg, Mn, Na, Nd, Rb, Sb, Sc, Sm, Th and Zn in environmental samples. The obtained results show that the water and sediment contaminated with heavy metals and toxic elements from the Das Velhas River upstream basin, the mining region, carry contamination to the ichthyofauna and farming region within a distance of approximately 400 km.


Subject(s)
Metals/analysis , Mining , Water Pollutants, Chemical/analysis , Animals , Brazil , Geologic Sediments/chemistry , Neutron Activation Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...