Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732421

ABSTRACT

The characterization of colleters in Rubiaceae is crucial for understanding their role in plant function. Analyzing colleters in Palicourea tetraphylla and Palicourea rudgeoides aims to deepen the understanding of these structures morphoanatomical and functional characteristics. The study reveals colleters with palisade epidermis and a parenchymatic central axis, classified as standard type, featuring vascularization and crystals. Colleter secretion, abundant in acidic mucopolysaccharides, proteins, and phenolic compounds, protects against desiccation. The ontogenesis, development, and senescence of the colleters are quite rapid and fulfill their role well in biotic and abiotic protection because these structures are present at different stages of development in the same stipule. Pronounced protrusions on the colleters surface, coupled with the accumulation of secretion in the intercellular and subcuticular spaces, suggest that the secretory process occurs through the wall, driven by pressure resulting from the accumulation of secretion. The microorganisms in the colleters' secretion, especially in microbiota-rich environments such as the Atlantic Forest, provide valuable information about plant-microorganism interactions, such as resistance to other pathogens and organisms and ecological balance. This enhanced understanding of colleters contributes to the role of these structures in the plant and enriches knowledge about biological interactions within specific ecosystems and the family taxonomy.

2.
Bull Environ Contam Toxicol ; 110(6): 116, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37318661

ABSTRACT

The particle size reduction technology is used in several segments, including sunscreens and new techniques and product improvement. One of the main particles used in the sunscreens formulation is titanium dioxide (TiO2). This formulation allows for better characteristics of these products. Perspectives like incorporation of the particles by other biological systems beyond humans and their effects should be observed. This work aimed to evaluate the titanium dioxide microparticles phytotoxicity on Lactuca sativa L. plants through tests of germination, growth, and weight analysis using microscopy techniques: optical microscopy (OM) and scanning electron microscopy (SEM). Some of the results showed cellular and morphological damage, mainly in the roots and 50 mg L-1 TiO2 concentration, confirmed by SEM. Additionally, anatomical damages like vascular bundle disruption and irregularity in the cortex cells were confirmed by SEM. Additionally, anatomical damages were observed on the three main organs (root, hypocotyl, and leaves) evidenced by the OM. Perspectives to confirm new hypotheses of the interaction of nanomaterials with biological systems are necessary.


Subject(s)
Lactuca , Seedlings , Humans , Lactuca/metabolism , Sunscreening Agents , Germination , Seeds , Plant Roots
3.
ACS Nano ; 17(8): 7417-7430, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36877273

ABSTRACT

In the present study we evaluate the effect of superparamagnetic iron oxide nanoparticles (SPIONs) carrying usnic acid (UA) as chemical cargo on the soil microbial community in a dystrophic red latosol (oxysol). Herein, 500 ppm UA or SPIONs-framework carrying UA were diluted in sterile ultrapure deionized water and applied by hand sprayer on the top of the soil. The experiment was conducted in a growth chamber at 25 °C, with a relative humidity of 80% and a 16 h/8 h light-dark cycle (600 lx light intensity) for 30 days. Sterile ultrapure deionized water was used as the negative control; uncapped and oleic acid (OA) capped SPIONs were also tested to assess their potential effects. Magnetic nanostructures were synthesized by a coprecipitation method and characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, hydrodynamic diameter, magnetic measurements, and release kinetics of chemical cargo. Uncapped and OA-capped SPIONs did not significantly affect soil microbial community. Our results showed an impairment in the soil microbial community exposed to free UA, leading to a general decrease in negative effects on soil-based parameters when bioactive was loaded into the nanoscale magnetic carrier. Besides, compared to control, the free UA caused a significant decrease in microbial biomass C (39%), on the activity of acid protease (59%), and acid phosphatase (23%) enzymes, respectively. Free UA also reduced eukaryotic 18S rRNA gene abundance, suggesting a major impact on fungi. Our findings indicate that SPIONs as bioherbicide nanocarriers can reduce the negative impacts on soil. Therefore, nanoenabled biocides may improve agricultural productivity, which is important for food security due to the need of increasing food production.


Subject(s)
Magnetite Nanoparticles , Magnetite Nanoparticles/chemistry , Soil , Magnetic Iron Oxide Nanoparticles , Water
4.
Microsc Res Tech ; 86(6): 636-647, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36951250

ABSTRACT

In this study, the toxicity effects of titanium dioxide (MTiO2 ) microparticles on Artemia sp. nauplii instar I and II between 24 and 48 h was evaluated. The MTiO2 were characterized using different microscopy techniques. MTiO2 rutile was used in toxicity tests at concentration of 12.5, 25, 50, and 100 ppm. No toxicity was observed in Artemia sp. nauplii instar I at the time of 24 and 48 h. However, Artemia sp. nauplii instar II toxicity was observed within 48 h of exposure. MTiO2 at concentrations of 25, 50 and 100 ppm was lethal for Artemia sp. with a significant difference (p ≤ .05) in relation to the control artificial sea water with LC50 value at 50 ppm. Analysis of optical and scanning electron microscopy revealed tissue damage and morphological changes in Artemia sp. nauplii instar II. By using confocal laser scanning microscopy, cell damage was observed due to the toxicity of MTiO2 at a concentration of 20, 50, and 100 ppm. The high mortality rate is related to the filtration of MTiO2 by Artemia sp. nauplii instar II due to the complete development of the digestive tract.


Subject(s)
Artemia , Titanium , Animals , Titanium/toxicity , Toxicity Tests
5.
Foods ; 11(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36076881

ABSTRACT

The effects of ultrasound processing parameters on the extraction of antioxidative enzymes and a toxicity assessment of cashew apple bagasse puree were investigated. Ultrasound directly affects the formation of reactive oxygen species such as H2O2, and consequently, superoxide dismutase, catalase, and ascorbate peroxidase activities. S.O.D. activity increased up to 280% after U.S. processing at 75 W/cm2, 1:3 bagasse: water ratio, and 10 min compared to non-processed bagasse. Therefore, the effect of ultrasound in delaying browning could be correlated to the enhanced antioxidant enzyme activity and decrease in peroxidase activity. At center point conditions (226 W/cm2, 1:3 bagasse: water ratio; 6 min), a decrease of 20% and 50% on POD and PPO activities was observed, respectively. No significant acute toxicity or protective effect was observed in unprocessed and sonicated cashew apple bagasse. Although cashew bagasse processed at 75 W/cm2 prevented nauplii death after 24 h of exposure, this data cannot assure the protective effect once the number of dead nauplii on 100 µg/mL was similar. However, these data indicate a possible protective effect, especially in higher cashew bagasse concentrations. The results suggest that sonicated cashew apple bagasse puree, a coproduct obtained from a traditional valued fruit in Brazil, may be used as a source of antioxidative enzymes, which further has great importance in therapeutics.

6.
Funct Plant Biol ; 48(11): 1113-1123, 2021 10.
Article in English | MEDLINE | ID: mdl-34585660

ABSTRACT

Silver nanoparticle (AgNPs) toxicity is related to nanoparticle interaction with the cell wall of microorganisms and plants. This interaction alters cell wall conformation with increased reactive oxygen species (ROS) in the cell. With the increase of ROS in the cell, the dissolution of zero silver (Ag0) to ionic silver (Ag+) occurs, which is a strong oxidant agent to the cellular wall. AgNP interaction was evaluated by transmission electron microscopy (TEM) on Lactuca sativa roots, and the mechanism of passage through the outer cell wall (OCW) was also proposed. The results suggest that Ag+ binds to the hydroxyls (OH) present in the cellulose structure, thus causing the breakdown of the hydrogen bonds. Changes in cell wall structure facilitate the passage of AgNPs, reaching the plasma membrane. According to the literature, silver nanoparticles with an average diameter of 15nm are transported across the membrane into the cells by caveolines. This work describes the interaction between AgNPs and the cell wall and proposes a transport model through the outer cell wall.


Subject(s)
Asteraceae , Metal Nanoparticles , Cell Wall , Lactuca , Metal Nanoparticles/toxicity , Silver
7.
Food Res Int ; 147: 110479, 2021 09.
Article in English | MEDLINE | ID: mdl-34399475

ABSTRACT

This study evaluated the atmospheric cold plasma (ACP) effect on cashew apple juice composition at different frequencies (200 and 700 Hz). The impact of this non-thermal technology on the organic juice compounds after the processing and along with the in vitro digestion carried out in a simulated digestion system at 37 °C/6 h was evaluated. The changes in the juice composition were determined by NMR spectroscopy and chemometric analyses. Vitamin C and total phenolic compounds were also quantified in processed and non-processed (control) juices and after each digestion phase. The results showed decreased glucose and fructose in samples treated by ACP and an increment in malic acid concentration for ACP700. ACP increased the amount of vitamin C in the juices and did not affect the total phenolic content. The gastric digestion highlighted the pronounced effect of plasma on the juice composition, increasing all of the components detected by NMR. Cashew apple juice processed by ACP700 presented a higher concentration of malic acid and phenylalanine. An increased bioaccessibility of vitamin C was also found for ACP700. Although ACP processing has decreased some compounds' concentration, this technology improved the bioaccessibility of vitamin C - the main bioactive compound of cashew apple juice.


Subject(s)
Anacardium , Malus , Plasma Gases , Ascorbic Acid , Vitamins
8.
Environ Sci Pollut Res Int ; 26(27): 27579-27589, 2019 Sep.
Article in English | MEDLINE | ID: mdl-29594880

ABSTRACT

Hydrothermal carbonization (HTC) is a thermochemical process carried out in an aqueous medium. It is capable of converting biomass into a solid, carbon-rich material (hydrochar), and producing a liquid phase (process water) which contains the unreactive feedstock and/or chemical intermediates from the carbonization reaction. The aim of this study was to evaluate the characteristics of process water generated by HTC from vinasse and sugarcane bagasse produced by sugarcane industry and to evaluate its toxicity to both marine (using Artemia salina as a model organism) and the terrestrial environment (through seed germination studies of maize, lettuce, and tomato). The experiments showed that concentrated process water completely inhibited germination of maize, lettuce, and tomato seeds. On the other hand, diluted process water was able to stimulate seedlings of maize and tomato and enhance root and shoot growth. For Artemia, the LC50 indicated that the process water is practically non-toxic; however, morphological changes, especially damages to the digestive tube and antennas of Artemia, were observed for the concentration of 1000 mg C L-1.


Subject(s)
Carbon/chemistry , Saccharum/chemistry , Biomass , Germination , Industry , Lactuca/chemistry , Solanum lycopersicum/chemistry , Seeds/chemistry , Water , Zea mays/chemistry
9.
Am J Transl Res ; 7(12): 2573-88, 2015.
Article in English | MEDLINE | ID: mdl-26885258

ABSTRACT

Acute kidney injury (AKI) is characterized by rapid and potentially reversible decline in renal function; however, the current management for AKI is nonspecific and associated with limited supportive care. Considering the need for more novel therapeutic approaches, we believe that lectins from Dioclea violacea (Dvl), based on their anti-inflammatory properties, could be beneficial for the treatment of AKI induced by renal ischemia/reperfusion (IR). Dvl (1 mg/kg, i.v.) or vehicle (100 µL) was administered to Wistar rats prior to the induction of bilateral renal ischemia (45 min). Following 24 hours of reperfusion, inulin and para-aminohippurate (PAH) clearances were performed to determine glomerular filtration rate (GFR), renal plasma flow (RPF), renal blood flow (RBF) and renal vascular resistance (RVR). Renal inflammation was assessed using myeloperoxidase (MPO) activity. Kidney sections were stained with hematoxylin-eosin to evaluate morphological changes. Intracellular superoxide anions, hydrogen peroxide, peroxynitrite, nitric oxide and apoptosis were analyzed using flow cytometry. IR resulted in diminished GFR, RPF, RBF, and increased RVR; however, these changes were ameliorated in rats receiving Dvl. AKI-induced histomorphological changes, such as tubular dilation, tubular necrosis and proteinaceous casts, were attenuated by Dvl administration. Treatment with Dvl resulted in diminished renal MPO activity, oxidative stress and apoptosis in rats submitted to IR. Our data reveal that Dvl has a protective effect in the kidney, improving renal function after IR injury, probably by reducing neutrophil recruitment and oxidative stress. These results indicate that Dvl can be considered a new therapeutic approach for AKI-induced kidney injury.

10.
Molecules ; 18(9): 10857-69, 2013 Sep 04.
Article in English | MEDLINE | ID: mdl-24008245

ABSTRACT

Lectin from the seeds of Dioclea lasiophylla (DlyL) was purified in a single step by affinity chromatography on a Sephadex® G-50 column. DlyL strongly agglutinated rabbit erythrocytes and was inhibited by monosaccharides (D-mannose and α-methyl-D-mannoside) and glycoproteins (ovalbumin and fetuin). Similar to other Diocleinae lectins, DlyL has three chains, α, ß and γ, with mass of 25,569 ± 2, 12,998 ± 1 and 12,588 ± 1 Da, respectively, and has no disulfide bonds. The hemagglutinating activity of DlyL was optimal in pH 8.0, stable at a temperature of 70 °C and decreased in EDTA solution, indicating that lectin activity is dependent on divalent metals. DlyL exhibited low toxicity on Artemia sp. nauplii, but this effect was dependent on the concentration of lectin in solution. DlyL immobilized on cyanogen bromide-activated Sepharose® 4B bound 0.917 mg of ovalbumin per cycle, showing the ability to become a tool for glycoproteomics studies.


Subject(s)
Dioclea/chemistry , Hemagglutinins/pharmacology , Mannose-Binding Lectins/pharmacology , Plant Extracts/pharmacology , Seeds/chemistry , Animals , Artemia , Chelating Agents/chemistry , Chromatography, Affinity , Edetic Acid/chemistry , Erythrocytes/drug effects , Hemagglutination , Hemagglutinins/chemistry , Hemagglutinins/isolation & purification , Hydrogen-Ion Concentration , Lethal Dose 50 , Mannose-Binding Lectins/chemistry , Mannose-Binding Lectins/isolation & purification , Ovalbumin/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Protein Binding , Rabbits , Sepharose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...