Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 14(12): 2985-94, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12468722

ABSTRACT

A collection of Arabidopsis lines with T-DNA insertions in known sites was generated to increase the efficiency of functional genomics. A high-throughput modified thermal asymmetric interlaced (TAIL)-PCR protocol was developed and used to amplify DNA fragments flanking the T-DNA left borders from approximately 100000 transformed lines. A total of 85108 TAIL-PCR products from 52964 T-DNA lines were sequenced and compared with the Arabidopsis genome to determine the positions of T-DNAs in each line. Predicted T-DNA insertion sites, when mapped, showed a bias against predicted coding sequences. Predicted insertion mutations in genes of interest can be identified using Arabidopsis Gene Index name searches or by BLAST (Basic Local Alignment Search Tool) search. Insertions can be confirmed by simple PCR assays on individual lines. Predicted insertions were confirmed in 257 of 340 lines tested (76%). This resource has been named SAIL (Syngenta Arabidopsis Insertion Library) and is available to the scientific community at www.tmri.org.


Subject(s)
Arabidopsis/genetics , DNA, Bacterial/genetics , Agrobacterium tumefaciens/genetics , Binding Sites/genetics , Chromosomes, Plant/genetics , DNA, Bacterial/chemistry , DNA, Plant/chemistry , DNA, Plant/genetics , Databases, Genetic , Genome, Plant , Internet , Mutagenesis, Insertional , Plants, Genetically Modified , Polymerase Chain Reaction/methods , Seeds/genetics , Sequence Analysis, DNA
2.
Science ; 296(5565): 92-100, 2002 Apr 05.
Article in English | MEDLINE | ID: mdl-11935018

ABSTRACT

The genome of the japonica subspecies of rice, an important cereal and model monocot, was sequenced and assembled by whole-genome shotgun sequencing. The assembled sequence covers 93% of the 420-megabase genome. Gene predictions on the assembled sequence suggest that the genome contains 32,000 to 50,000 genes. Homologs of 98% of the known maize, wheat, and barley proteins are found in rice. Synteny and gene homology between rice and the other cereal genomes are extensive, whereas synteny with Arabidopsis is limited. Assignment of candidate rice orthologs to Arabidopsis genes is possible in many cases. The rice genome sequence provides a foundation for the improvement of cereals, our most important crops.


Subject(s)
Genome, Plant , Oryza/genetics , Sequence Analysis, DNA , Arabidopsis/genetics , Chromosome Mapping , Chromosomes/genetics , Computational Biology , Conserved Sequence , DNA, Plant/genetics , Databases, Nucleic Acid , Edible Grain/genetics , Gene Duplication , Genes, Plant , Genomics , Oryza/metabolism , Oryza/physiology , Phosphate Transport Proteins/genetics , Plant Diseases , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Structures/genetics , Repetitive Sequences, Nucleic Acid , Sequence Homology, Nucleic Acid , Software , Synteny , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...