Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-30910893

ABSTRACT

Voriconazole is a triazole antifungal agent recommended as primary treatment for invasive aspergillosis, as well as some other mold infections. However, it presents some pharmacokinetic singularities that lead to a great variability intra- and interindividually, nonlinear pharmacokinetics, and a narrow therapeutic range. Most experts have recommended tracing the levels of voriconazole in patients when receiving treatment. This azole is metabolized through the hepatic enzyme complex cytochrome P450 (CYPP450), with the isoenzyme CYP2C19 being principally involved. Allelic variations (polymorphisms) of the gene that encodes this enzyme are known to contribute to variability in voriconazole exposure. Three different allelic variants, CYP2C19*17, CYP2C19*2, and CYP2C19*3, could explain most of the phenotypes related to the voriconazole metabolism and some of its pharmacokinetic singularities. We designed a rapid molecular method based on high-resolution melting to characterize these polymorphisms in a total of 142 samples, avoiding sequencing. Three PCRs were designed with similar cycling conditions to run simultaneously. The results showed that our method represents a fast, accurate, and inexpensive means to study these variants related to voriconazole metabolism. In clinical practice, this could offer a useful tool to individually optimize therapy and reduce expenses in patients with fungal infections.


Subject(s)
Antifungal Agents/pharmacology , Cytochrome P-450 CYP2C19/genetics , Voriconazole/pharmacology , Aspergillosis/drug therapy , Aspergillosis/genetics , Genotype , Pharmacokinetics , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...