Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(8): 107475, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37588163

ABSTRACT

Septic patients frequently develop skeletal muscle wasting and weakness, resulting in severe clinical consequences and adverse outcomes. Sepsis triggers sustained induction of autophagy, a key cellular degradative pathway, in skeletal muscles. However, the impact of enhanced autophagy on sepsis-induced muscle dysfunction remains unclear. Using an inducible and muscle-specific Atg7 knockout mouse model (Atg7iSkM-KO), we investigated the functional importance of skeletal muscle autophagy in sepsis using the cecal ligation and puncture model. Atg7iSkM-KO mice exhibited a more severe phenotype in response to sepsis, marked by severe muscle wasting, hypoglycemia, higher ketone levels, and a decreased in survival as compared to mice with intact Atg7. Sepsis and Atg7 deletion resulted in the accumulation of mitochondrial dysfunction, although sepsis did not further worsen mitochondrial dysfunction in Atg7iSkM-KO mice. Overall, our study demonstrates that autophagy inactivation in skeletal muscles triggers significant worsening of sepsis-induced muscle and metabolic dysfunctions and negatively impacts survival.

2.
J Cachexia Sarcopenia Muscle ; 13(1): 589-604, 2022 02.
Article in English | MEDLINE | ID: mdl-34725955

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) patients exhibit skeletal muscle atrophy, denervation, and reduced mitochondrial oxidative capacity. Whilst chronic tobacco smoke exposure is implicated in COPD muscle impairment, the mechanisms involved are ambiguous. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that activates detoxifying pathways with numerous exogenous ligands, including tobacco smoke. Whereas transient AHR activation is adaptive, chronic activation can be toxic. On this basis, we tested the hypothesis that chronic smoke-induced AHR activation causes adverse muscle impact. METHODS: We used clinical patient muscle samples, and in vitro (C2C12 myotubes) and in vivo models (mouse), to perform gene expression, mitochondrial function, muscle and neuromuscular junction morphology, and genetic manipulations (adeno-associated virus-mediated gene transfer). RESULTS: Sixteen weeks of tobacco smoke exposure in mice caused muscle atrophy, neuromuscular junction degeneration, and reduced oxidative capacity. Similarly, smoke exposure reprogrammed the muscle transcriptome, with down-regulation of mitochondrial and neuromuscular junction genes. In mouse and human patient specimens, smoke exposure increased muscle AHR signalling. Mechanistically, experiments in cultured myotubes demonstrated that smoke condensate activated the AHR, caused mitochondrial impairments, and induced an AHR-dependent myotube atrophy. Finally, to isolate the role of AHR activity, expression of a constitutively active AHR mutant without smoke exposure caused atrophy and mitochondrial impairments in cultured myotubes, and muscle atrophy and neuromuscular junction degeneration in mice. CONCLUSIONS: These results establish that chronic AHR activity, as occurs in smokers, phenocopies the atrophy, mitochondrial impairment, and neuromuscular junction degeneration caused by chronic tobacco smoke exposure.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Receptors, Aryl Hydrocarbon , Animals , Humans , Mice , Muscle, Skeletal/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Smoke/adverse effects , Smoking/adverse effects
3.
BMC Health Serv Res ; 21(1): 987, 2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34537027

ABSTRACT

BACKGROUND: The challenge of including citizen-patient voices in healthcare planning is exacerbated in rural communities by regional variation in priorities and a historical lack of attention to rural healthcare needs. This paper aims to address this deficit by presenting findings from a mixed methods study to understand rural patient and community priorities for healthcare. METHODS: We conducted a provincial survey of rural citizens-patients across British Columbia, Canada to understand their most pressing healthcare needs, supplemented by semi-structured interviews. Survey and interview participants were asked to articulate, in their own words, their communities' most pressing healthcare needs, to explain the importance of these priorities to their communities, and to offer possible solutions to address these challenges. Open-text survey responses and interview data were analyzed thematically to elicit priorities of the data and their significance to answer the research questions. RESULTS: We received 1,287 survey responses from rural citizens-patients across BC, 1,158 of which were considered complete. We conducted nine telephone interviews with rural citizens-patients. Participants stressed the importance of local access to care, including emergency services, maternity care, seniors care, specialist services and mental health and substance use care. A lack of access to primary care services was the most pronounced gap. Inadequate local health services presented geographic, financial and social barriers to accessing care, led to feelings of vulnerability among rural patients, resulted in treatment avoidance, and deterred community growth. CONCLUSIONS: Two essential prongs of an integration framework for the inclusion of citizen-patient voices in healthcare planning include merging patient priorities with population needs and system-embedded accountability for the inclusion of patient and community priorities.


Subject(s)
Maternal Health Services , Rural Health Services , British Columbia/epidemiology , Delivery of Health Care , Female , Health Services Accessibility , Humans , Pregnancy , Rural Population , Surveys and Questionnaires
4.
J Gerontol A Biol Sci Med Sci ; 74(12): 1887-1895, 2019 11 13.
Article in English | MEDLINE | ID: mdl-30855073

ABSTRACT

Denervation and mitochondrial impairment are implicated in age-related skeletal muscle atrophy and may play a role in physical frailty. We recently showed that denervation modulates muscle mitochondrial function in octogenarian men, but this has not been examined in elderly women. On this basis, we tested the hypothesis that denervation plays a modulating role in mitochondrial impairment in skeletal muscle from prefrail or frail elderly (FE) women. Mitochondrial respiratory capacity and reactive oxygen species emission were examined in permeabilized myofibers obtained from vastus lateralis muscle biopsies from FE and young inactive women. Muscle respiratory capacity was reduced in proportion to a reduction in a mitochondrial marker protein in FE, and mitochondrial reactive oxygen species emission was elevated in FE versus young inactive group. Consistent with a significant accumulation of neural cell adhesion molecule-positive muscle fibers in FE (indicative of denervation), a 50% reduction in reactive oxygen species production after pharmacologically inhibiting the denervation-mediated reactive oxygen species response in FE women suggests a significant modulation of mitochondrial function by denervation. In conclusion, our data support the hypothesis that denervation plays a modulating role in skeletal muscle mitochondrial function in FE women, suggesting therapeutic strategies in advanced age should focus on the causes and treatment of denervation.


Subject(s)
Denervation , Frail Elderly , Mitochondria, Muscle/metabolism , Muscle, Skeletal/innervation , Muscle, Skeletal/metabolism , Reactive Oxygen Species/metabolism , Aged , Biopsy , Case-Control Studies , Female , Humans , Neural Cell Adhesion Molecules/metabolism , Oxygen Consumption , Quebec , Surveys and Questionnaires , Young Adult
5.
J Physiol ; 596(14): 2865-2881, 2018 07.
Article in English | MEDLINE | ID: mdl-29663403

ABSTRACT

KEY POINTS: Chronic obstructive pulmonary disease (COPD) is largely caused by smoking, and patient limb muscle exhibits a fast fibre shift and atrophy. We show that this fast fibre shift is associated with type grouping, suggesting recurring cycles of denervation-reinnervation underlie the type shift. Compared to patients with normal fat-free mass index (FFMI), patients with low FFMI exhibited an exacerbated fibre type shift, marked accumulation of very small persistently denervated muscle fibres, and a blunted denervation-responsive transcript profile, suggesting failed denervation precipitates muscle atrophy in patients with low FFMI. Sixteen weeks of passive tobacco smoke exposure in mice caused neuromuscular junction degeneration, consistent with a key role for smoke exposure in initiating denervation in COPD. ABSTRACT: A neurological basis for the fast fibre shift and atrophy seen in limb muscle of patients with chronic obstructive pulmonary disease (COPD) has not been considered previously. The objective of our study was: (1) to determine if denervation contributes to fast fibre shift and muscle atrophy in COPD; and (2) to assess using a preclinical smoking mouse model whether chronic tobacco smoke (TS) exposure could initiate denervation by causing neuromuscular junction (NMJ) degeneration. Vastus lateralis muscle biopsies were obtained from severe COPD patients [n = 10 with low fat-free mass index (FFMI), 65 years; n = 15 normal FFMI, 65 years) and healthy age- and activity-matched non-smoker control subjects (CON; n = 11, 67 years), to evaluate morphological and transcriptional markers of denervation. To evaluate the potential for chronic TS exposure to initiate these changes, we examined NMJ morphology in male adult mice following 16 weeks of passive TS exposure. We observed a high proportion of grouped fast fibres and a denervation transcript profile in COPD patients, suggesting that motor unit remodelling drives the fast fibre type shift in COPD patient limb muscle. A further exacerbation of fast fibre grouping in patients with low FFMI, coupled with blunted reinnervation signals, accumulation of very small non-specific esterase hyperactive fibres and neural cell adhesion molecule-positive type I and type II fibres, suggests denervation-induced exhaustion of reinnervation contributes to muscle atrophy in COPD. Evidence from a smoking mouse model showed significant NMJ degeneration, suggesting that recurring denervation in COPD is probably caused by decades of chronic TS exposure.


Subject(s)
Muscle Fibers, Skeletal/pathology , Muscular Atrophy/etiology , Neuromuscular Junction/pathology , Pulmonary Disease, Chronic Obstructive/complications , Smoking/physiopathology , Aged , Animals , Biomarkers/analysis , Humans , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...