Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7181, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37137936

ABSTRACT

Paleodictyon is one of the most iconic and widespread of trace fossils in the geological record. However, modern examples are less well known and restricted to deep-sea settings at relatively low latitudes. Here, we report the distribution of Paleodictyon at six abyssal sites near the Aleutian Trench. This study reveals for the first time the presence of Paleodictyon at Subarctic latitudes (51°-53°N) and at depths over 4500 m, although the traces were not observed at stations deeper than 5000 m suggesting that there is some bathymetric constraint for the trace maker. Two small Paleodictyon morphotypes were recognized (average mesh size of 1.81 cm), one having a central hexagonal pattern, the other being characterized by a non-hexagonal pattern. Within the study area, Paleodictyon shows no apparent correlation with local environmental parameters. Finally, based on a worldwide morphological comparison, we conclude that the new Paleodictyon specimens represent distinct ichnospecies that are associated with the relatively eutrophic conditions in this region. Their smaller size may reflect this more eutrophic setting in which sufficient food can be obtained from a smaller area in order to satisfy the energetic requirements of the tracemakers. If so, then Paleodictyon size may provide some assistance when interpreting paleoenvironmental conditions.


Subject(s)
Fossils
2.
Ecol Evol ; 13(3): e9867, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36937061

ABSTRACT

Trails, burrows, and other "life traces" in sediment provide important evidence for understanding ecology-both of the maker and of other users-and behavioral information often lacking in inaccessible ecosystems, such as the deep sea or those that are already extinct. Here, we report novel sublinear rows of openings in the abyssal plains of the North Pacific, and the first plausible hypothesis for a maker of these constructions. Enigmatic serial burrows have now been recorded in the Pacific and Atlantic deep sea. Based on image and specimen evidence, we propose that these Bering Sea excavations represent amphipod burrows, while the maker of the previously known Mid-Atlantic Ridge constructions remains undetermined. We propose that maerid amphipods could create the Pacific burrows by eating-digging horizontally below the surface along a nutrient-rich layer in the sediment, making the serial openings above them as they go, for conveniently removing excavated sediment as the excavation progresses. These striking structures contribute to local biodiversity, and their maker could be considered a deep-sea ecosystem engineer.

3.
Sci Rep ; 11(1): 4198, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33603101

ABSTRACT

Oceanic gateways have modulated ocean circulation and have influenced climatic variations throughout the Earth´s history. During the late Miocene (7.8-7.35 Ma), the Atlantic Ocean and the Mediterranean Sea were connected through the Rifian Corridor (Morocco). This gateway is one of the few examples of deep ancient seaways with a semi-continuous sedimentary record. Deposits comprise turbidites intercalated between deep-sea mudstone (i.e., hemipelagites and drift deposits), channelized sandstone contourite facies, and shallow marine sandstone. Herein an ichnological analysis was conducted in these upper Miocene sediments to improve characterisation of palaeoenvironmental conditions. In addition, ichnofacies were analysed to elucidate how bottom currents control ichnofacies distribution and can modify their attributes. Turbidite deposits are typified by vertical trace fossils (i.e., Ophiomorpha), conforming the Ophiomorpha rudis ichnosubfacies. Contouritic sandstone exhibits high density and low diversity trace-fossil assemblage, with predominant Macaronichnus and Scolicia, resembling a proximal expression of the Cruziana ichnofacies. Shallow marine environments are dominated by vertical trace fossils (e.g., Conichnus, Ophiomorpha, Skolithos), allowing an assignation to the Skolithos ichnofacies. This study reveals for the first time a variability in ichnofacies attributes and distribution at the Rifian Corridor, associated with turbidites, contourite and shallow marine sediments. Hydrodynamic energy reveals as the major factor controlling trace maker communities in the studied seaway. Highly energetic conditions typical of shallower settings are present in deeper-water environments (i.e., slope), contributing to ichnodiversity impoverishment in ichnofacies.

4.
Sci Rep ; 11(1): 1174, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479265

ABSTRACT

The feeding behavior of the giant ambush-predator "Bobbit worm" (Eunice aphroditois) is spectacular. They hide in their burrows until they explode upwards grabbing unsuspecting prey with a snap of their powerful jaws. The still living prey are then pulled into the sediment for consumption. Although predatory polychaetes have existed since the early Paleozoic, their bodies comprise mainly soft tissue, resulting in a very incomplete fossil record, and virtually nothing is known about their burrows and behavior beneath the seafloor. Here we use morphological, sedimentological, and geochemical data from Miocene strata in northeast Taiwan to erect a new ichnogenus, Pennichnus. This trace fossil consists of an up to 2 m long, 2-3 cm in diameter, L-shaped burrow with distinct feather-like structures around the upper shaft. A comparison of Pennichnus to biological analogs strongly suggests that this new ichnogenus is associated with ambush-predatory worms that lived about 20 million years ago.


Subject(s)
Fossils , Polychaeta/anatomy & histology , Animals , Taiwan
5.
Sci Rep ; 11(1): 1975, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479429

ABSTRACT

Bioturbation is an important factor for reservoir quality due to the modification of host rock petrophysical properties (i.e., porosity, permeability, and connectivity). However, there is no predictable relationship between bioturbation and its effect on rock properties, due to the variability of the involved ichnological features. A detailed ichnological analysis is necessary to determine how bioturbation affects petrophysical properties in a bioturbated reservoir. Traditionally, ichnological features such as density, tiering, size, orientation, architecture, and fill, have been considered. However, other properties have been undervalued as is the case of lining. Here, we present a detailed study on the effects of Macaronichnus burrows, an ichnotaxon usually related to hydrocarbon exploration due to its high concentration in rock notably affecting petrophysical properties. Macaronichnus, a subhorizontal cylindrical burrow, is characterized by a well-defined and developed outer rim surrounding the tube core. Our data indicates a clear zonation in porosity according to burrow structure, with the lowest porosity in the tube core and higher values associated with the surrounded rim. This duality is determined by the tracemaker grain selective feeding activity and the consequent concentrated cementation. The organism concentrates the lighter minerals in the tube core fill during feeding, favoring post-depositional cementation during diagenesis and this results in lower porosity than the host rock. However, heavy minerals, mainly glauconite, are located in the rim, showing higher porosity. Our results support the view that ichnological analyses are essential to determine reservoir quality in bioturbated reservoirs, evidencing that other ichnological properties in addition to those traditionally considered must be evaluated.

SELECTION OF CITATIONS
SEARCH DETAIL
...