Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36297572

ABSTRACT

Apart from its well-known activity as an antimicrobial agent, Curcumin (CURC) has recently started to arouse interest as a photosensitizer in the photodynamic therapy of bacterial infections. The aim of the present study was to evidence the influence of the encapsulation of Curcumin into polymeric micelles on the efficiency of photoinduced microbial inhibition. The influence of the hydrophobicity of the selected Pluronics (P84, P123, and F127) on the encapsulation, stability, and antimicrobial efficiency of CURC-loaded micelles was investigated. In addition, the size, morphology, and drug-loading capacity of the micellar drug delivery systems have been characterized. The influence of the presence of micellar aggregates and unassociated molecules of various Pluronics on the membrane permeability was investigated on both normal and resistant microbial strains of E. coli, S. aureus, and C. albicans. The antimicrobial efficiency on the common pathogens was assessed for CURC-loaded polymeric micelles in dark conditions and activated by blue laser light (470 nm). Significant results in the reduction of the microorganism's growth were found in cultures of C. albicans, even at very low concentrations of surfactants and Curcumin. Unlike the membrane permeabilization effect of the monomeric solution of Pluronics, reported in the case of tumoral cells, a limited permeabilization effect was found on the studied microorganisms. Encapsulation of the Curcumin in Pluronic P84 and P123 at very low, nontoxic concentrations for photosensitizer and drug-carrier, produced CURC-loaded micelles that prove to be effective in the light-activated inhibition of resistant species of Gram-positive bacteria and fungi.

2.
Antioxidants (Basel) ; 11(5)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35624718

ABSTRACT

Curcumin, due to its antioxidant, antibacterial, anti-inflammatory, and antitumoral activity, has attracted huge attention in applications in many fields such as pharmacy, medicine, nutrition, cosmetics, and biotechnology. The stability of curcumin-based products and preservation of antioxidant properties are still challenges in practical applications. Stability and antioxidant properties were studied for curcumin encapsulated in O/W microemulsion systems and three related gel microemulsions. Only biodegradable and biocompatible ingredients were used for carriers: grape seed oil as oily phase, Tween 80, and Plurol® Diisostearique CG as a surfactant mix, and ethanol as a co-solvent. For the gel microemulsions, water-soluble polymers, namely Carbopol® 980 NF, chitosan, and sodium hyaluronate were used. The influence of UVC irradiation and heat treatment on the degradation kinetics of curcumin in the formulations was studied. Because of the antioxidant character of the microemulsion oily phase, the possibility of a synergistic effect between grape seed oil and curcumin was explored. In this study, the high efficiency of the studied drug delivery systems to ensure protection from external degradative factors was confirmed. Also, the influence of the encapsulation in microemulsion and derived gel microemulsion systems on the antioxidant capacity curcumin was studied, and a synergistic effect with vegetal oil was demonstrated.

3.
Nanomaterials (Basel) ; 11(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34685015

ABSTRACT

ZnO nanoparticle-based multifunctional coatings were prepared by a simple, time-saving microwave method. Arginine and ammonia were used as precipitation agents, and zinc acetate dehydrate was used as a zinc precursor. Under the optimized conditions, flower-like morphologies of ZnO aggregates were obtained. The prepared nanopowders were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and UV/Visible spectroscopy. The developed in situ synthesis with microwave irradiation enabled significant ZnO nanoparticle deposition on cotton fabrics, without additional steps. The functionalized textiles were tested as a photocatalyst in methylene blue (MB) photodegradation and showed good self-cleaning and UV-blocking properties. The coated cotton fabrics exhibited good antibacterial properties against common microbial trains (Staphylococcus aureus, Escherichia coli, and Candida albicans), together with self-cleaning and photocatalytic efficiency in organic dye degradation. The proposed microwave-assisted in situ synthesis of ZnO nanocoatings on textiles shows high potential as a rapid, efficient, environmentally friendly, and scalable method to fabricate functional fabrics.

4.
Materials (Basel) ; 14(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946776

ABSTRACT

The present work aims at comparatively studying the effects of the concentrations of a monomer (10-30 wt% based on the whole hydrogel composition), crosslinking agent (1-3 mol% based on the monomer), and reinforcing agent (montmorillonite-MMT, 1-3 wt.% based on the whole hydrogel composition) on the swelling and viscoelastic properties of the crosslinked hydrogels prepared from methacrylic acid (MAA) and N,N'-methylenebisacrylamide (BIS) in the presence of K2S2O8 in aqueous solution. The viscoelastic measurements, carried out on the as-prepared hydrogels, showed that the monomer concentration had the largest impact, its three-time enhancement causing a 30-fold increase in the storage modulus, as compared with only a fivefold increase in the case of the crosslinking agent and 1.5-fold increase for MMT in response to a similar threefold concentration increase. Swelling studies, performed at three pH values, revealed that the water absorption of the hydrogels decreased with increasing concentration of both the monomer and crosslinking agent, with the amplitude of the effect of concentration modification being similar at pH 5.4 and 7.4 in both cases, but very different at pH 1.2. Further, it was shown that the increased pH differently influenced the swelling degree in the case of the hydrogel series in which the concentrations of the monomer and crosslinking agent were varied. In contrast to the effect of the monomer and crosslinking agent concentrations, the increase in the MMT amount in the hydrogel resulted in an increased swelling degree at pH 5.4 and 7.4, while at pH 1.2, a slight decrease in the water absorption was noticed. The hydrogel crosslinking density determinations revealed that this parameter was most affected by the increase in the monomer concentration.

5.
Molecules ; 26(7)2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33916520

ABSTRACT

In the present work, the properties of ZnO nanoparticles obtained using an eco-friendly synthesis (biomediated methods in microwave irradiation) were studied. Saponaria officinalis extracts were used as both reducing and capping agents in the green nanochemistry synthesis of ZnO. Inorganic zinc oxide nanopowders were successfully prepared by a modified hydrothermal method and plant extract-mediated method. The influence of microwave irradiation was studied in both cases. The size, composition, crystallinity and morphology of inorganic nanoparticles (NPs) were investigated using dynamic light scattering (DLS), powder X-ray diffraction (XRD), SEM-EDX microscopy. Tunings of the nanochemistry reaction conditions (Zn precursor, structuring agent), ZnO NPs with various shapes were obtained, from quasi-spherical to flower-like. The optical properties and photocatalytic activity (degradation of methylene blue as model compound) were also investigated. ZnO nanopowders' antibacterial activity was tested against Gram-positive and Gram-negative bacterial strains to evidence the influence of the vegetal extract-mediated synthesis on the biological activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Saponaria/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/chemical synthesis , Candida albicans/drug effects , Candida albicans/growth & development , Catalysis , Escherichia coli/drug effects , Escherichia coli/growth & development , Green Chemistry Technology , Humans , Light , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Microwaves , Photochemical Processes , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Zinc Oxide/chemistry
6.
Pharmaceutics ; 13(4)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33916981

ABSTRACT

Gel microemulsion combines the advantages of the microemulsion, which can encapsulate, protect and deliver large quantities of active ingredients, and the gel, which is so appreciated in the cosmetic industry. This study aimed to develop and characterize new gel microemulsions suitable for topical cosmetic applications, using grape seed oil as the oily phase, which is often employed in pharmaceuticals, especially in cosmetics. The optimized microemulsion was formulated using Tween 80 and Plurol® Diisostearique CG as a surfactant mix and ethanol as a co-solvent. Three different water-soluble polymers were selected in order to increase the viscosity of the microemulsion: Carbopol® 980 NF, chitosan, and sodium hyaluronate salt. All used ingredients are safe, biocompatible and biodegradable. Curcumin was chosen as a model drug. The obtained systems were physico-chemically characterized by means of electrical conductivity, dynamic light scattering, polarized microscopy and rheometric measurements. Evaluation of the cytotoxicity was accomplished by MTT assay. In the final phase of the study, the release behavior of Curcumin from the optimized microemulsion and two gel microemulsions was evaluated. Additionally, mathematical models were applied to establish the kinetic release mechanism. The obtained gel microemulsions could be effective systems for incorporation and controlled release of the hydrophobic active ingredients.

SELECTION OF CITATIONS
SEARCH DETAIL
...