Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Med Sci ; 32(1): 117-127, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27761667

ABSTRACT

CO2 laser has a beneficial effect on stem cells by mechanisms that are not clearly elucidated. We hypothesize that the effect of fractional CO2 laser on human adipose-derived stem cells (ADSC) could be due to changes in redox homeostasis and secretion of factors contributing to cellular proliferation and angiogenic potential. ADSC incubated in medium containing 0.5 or 10 % FBS were exposed to a single irradiation of a 10,600-nm fractional CO2 laser; non-irradiated ADSC were used as control. Viability/proliferation of ADSC was assessed by MTT assay; the intracellular reactive oxygen species (ROS) levels and the mitochondrial membrane potential (∆Ψm) were determined with DCFH-DA and JC-1 fluorescent probes, respectively. Molecules secreted by ADSC in the medium were determined by ELISA assay, and their capacity to support endothelial tube-like formation by the Matrigel assay. The results showed that compared to controls, ADSC kept in low FBS medium and irradiated with CO2 laser at 9 W exhibited: (a) increased proliferation (∼20 %), (b) transient increase of mitochondrial ROS and the capacity to restore Δψm after rotenone induced depolarization, and (c) augmented secretion in the conditioned medium of MMP-2 (twofold), MMP-9 (eightfold), VEGF (twofold), and adiponectin (∼50 %) that have the capacity to support angiogenesis of endothelial progenitor cells. In conclusion, the mechanisms underlying the benefic effect of CO2 laser on ADSC are the activation of the redox pathways which increases cell proliferation and enhances secretion of angiogenic molecules. These results explain, in part, the mechanisms involved in the increased regenerative potential of CO2 laser-exposed ADSC that could be exploited for clinical applications.


Subject(s)
Adipose Tissue/cytology , Lasers, Gas , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic , Regeneration/radiation effects , Biomarkers/metabolism , Cell Proliferation/radiation effects , Cell Separation , Cell Shape/radiation effects , Cells, Cultured , Homeostasis/radiation effects , Humans , Mesenchymal Stem Cells/radiation effects , Mitochondria/metabolism , Mitochondria/radiation effects , Neovascularization, Physiologic/radiation effects , Oxidation-Reduction , Phenotype , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...