Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731619

ABSTRACT

This study aims to investigate the vegetative buds from Picea abies (spruce), naturally found in a central region of Romania, through a comprehensive analysis of the chemical composition to identify bioactive compounds responsible for pharmacological properties. Using HPLC/derivatization technique of GC-MS and quantitative spectrophotometric assays, the phenolic profile, and main components of an ethanolic extract from the buds were investigated. The essential oil was characterized by GC-MS. Moreover, the antioxidant activity with the DPPH method, and the antimicrobial activity were tested. Heavy metal detection was performed by graphite furnace atomic absorption spectrometry. The main components of the alcoholic extract were astragalin, quercetin, kaempferol, shikimic acid, and quinic acid. A total content of 25.32 ± 2.65 mg gallic acid equivalent per gram of dry plant (mg GAE/g DW) and of 10.54 ± 0.083 mg rutin equivalents/g of dry plant (mg RE/g DW) were found. The essential oil had D-limonene, α-cadinol, δ-cadinene, 13-epimanool, and δ-3-carene as predominant components. The spruce vegetative buds exhibited significant antioxidant activity (IC50 of 53 µg/mL) and antimicrobial effects against Staphylococcus aureus. Furthermore, concentrations of heavy metals Pb and Cd were below detection limits, suggesting that the material was free from potentially harmful contaminants. The results confirmed the potential of this indigenous species to be used as a source of compounds with pharmacological utilities.


Subject(s)
Anti-Infective Agents , Antioxidants , Oils, Volatile , Phytochemicals , Picea , Plant Extracts , Picea/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry , Romania , Phenols/analysis , Phenols/pharmacology , Phenols/chemistry
2.
Biosensors (Basel) ; 14(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38248408

ABSTRACT

There is great interest in the development of prosthetic limbs capable of complex activities that are wirelessly connected to the patient's neural system. Although some progress has been achieved in this area, one of the main problems encountered is the selective acquisition of nerve impulses and the closing of the automation loop through the selective stimulation of the sensitive branches of the patient. Large-scale research and development have achieved so-called "cuff electrodes"; however, they present a big disadvantage: they are not selective. In this article, we present the progress made in the development of an implantable system of plug neural microelectrodes that relate to the biological nerve tissue and can be used for the selective acquisition of neuronal signals and for the stimulation of specific nerve fascicles. The developed plug electrodes are also advantageous due to their small thickness, as they do not trigger nerve inflammation. In addition, the results of the conducted tests on a sous scrofa subject are presented.


Subject(s)
Forearm , Inflammation , Humans , Electrodes, Implanted , Action Potentials , Automation
3.
Front Bioeng Biotechnol ; 10: 922772, 2022.
Article in English | MEDLINE | ID: mdl-35774059

ABSTRACT

LFIA is one of the most successful analytical methods for various target molecules detection. As a recent example, LFIA tests have played an important role in mitigating the effects of the global pandemic with SARS-COV-2, due to their ability to rapidly detect infected individuals and stop further spreading of the virus. For this reason, researchers around the world have done tremendous efforts to improve their sensibility and specificity. The development of LFIA has many sensitive steps, but some of the most important ones are choosing the proper labeling probes, the functionalization method and the conjugation process. There are a series of labeling probes described in the specialized literature, such as gold nanoparticles (GNP), latex particles (LP), magnetic nanoparticles (MNP), quantum dots (QDs) and more recently carbon, silica and europium nanoparticles. The current review aims to present some of the most recent and promising methods for the functionalization of the labeling probes and the conjugation with biomolecules, such as antibodies and antigens. The last chapter is dedicated to a selection of conjugation protocols, applicable to various types of nanoparticles (GNPs, QDs, magnetic nanoparticles, carbon nanoparticles, silica and europium nanoparticles).

4.
Sensors (Basel) ; 22(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35458809

ABSTRACT

In this article, we present our research achievements regarding the development of a remote sensing system for motor pulse acquisition, as a first step towards a complete neuroprosthetic arm. We present the fabrication process of an implantable electrode for nerve impulse acquisition, together with an innovative wirelessly controlled system. In our study, these were combined into an implantable device for attachment to peripheral nerves. Mechanical and biocompatibility tests were performed, as well as in vivo testing on pigs using the developed system. This testing and the experimental results are presented in a comprehensive manner, demonstrating that the system is capable of accomplishing the requirements of its designed application. Most significantly, neural electrical signals were acquired and transmitted out of the body during animal experiments, which were conducted according to ethical regulations in the field.


Subject(s)
Peripheral Nervous System , Remote Sensing Technology , Action Potentials , Animals , Electrodes, Implanted , Peripheral Nerves/physiology , Swine
5.
Molecules ; 27(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35164084

ABSTRACT

Nanocomposite materials have seen increased adoption in a wide range of applications, with toxic gas detection, such as carbon monoxide (CO), being of particular interest for this review. Such sensors are usually characterized by the presence of CO absorption sites in their structures, with the Langmuir reaction model offering a good description of the reaction mechanism involved in capturing the gas. Among the reviewed sensors, those that combined polymers with carbonaceous materials showed improvements in their analytical parameters such as increased sensitivities, wider dynamic ranges, and faster response times. Moreover, it was observed that the CO reaction mechanism can differ when measured in mixtures with other gases as opposed to when it is detected in isolation, which leads to lower sensitivities to the target gas. To better understand such changes, we offer a complete description of carbon nanostructure-based chemosensors for the detection of CO from the sensing mechanism of each material to the water solution strategies for the composite nanomaterials and the choice of morphology for enhancing a layers' conductivity. Then, a series of state-of-the-art resistive chemosensors that make use of nanocomposite materials is analyzed, with performance being assessed based on their detection range and sensitivity.

6.
Sensors (Basel) ; 21(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807640

ABSTRACT

Developing a sensing layer with high electroactive properties is an important aspect for proper functionality of a wearable sensor. The polymeric nanocomposite material obtained by a simple electropolymerization on gold interdigitated electrodes (IDEs) can be optimized to have suitable conductive properties to be used with direct current (DC) measurements. A new layer based on polyaniline:poly(4-styrenesulfonate) (PANI:PSS)/single-walled carbon nanotubes (SWCNT)/ferrocene (Fc) was electrosynthesized and deposed on interdigital transducers (IDT) and was characterized in detail using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoemission spectroscopy (XPS), and X-ray diffraction (XRD). The sensor characteristics of the material towards carbon monoxide (CO) in the concentration range of 10-300 ppm were examined, showing a minimal relative humidity interference of only 1% and an increase of sensitivity with the increase of CO concentration. Humidity interference could be controlled by the number of CV cycles when a compact layer was formed and the addition of Fc played an important role in the decrease of humidity. The results for CO detection can be substantially improved by optimizing the number of deposition cycles and enhancing the Fc concentration. The material was developed for selective detection of CO in real environmental conditions and shows good potential for use in a wearable sensor.


Subject(s)
Nanotubes, Carbon , Wearable Electronic Devices , Electrodes , Gold , Metallocenes
7.
Diagnostics (Basel) ; 10(8)2020 Jul 26.
Article in English | MEDLINE | ID: mdl-32722552

ABSTRACT

Due to rapidly spreading infectious diseases and the high incidence of other diseases such as cancer or metabolic syndrome, there is a continuous need for the development of rapid and accurate diagnosis methods. Screen-printed electrodes-based biosensors have been reported to offer reliable results, with high sensitivity and selectivity and, in some cases, low detection limits. There are a series of materials (carbon, gold, platinum, etc.) used for the manufacturing of working electrodes. Each version comes with advantages, as well as challenges for their functionalization. Thus, the aim is to review the most promising biosensors developed using screen-printed electrodes for the detection/quantification of proteins, biomarkers, or pathogenic microorganisms.

8.
Talanta ; 210: 120643, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31987187

ABSTRACT

Two new biomimetic sensors for the detection of adiponectin (A) and leptin (L) through molecularly imprinted polymers (MIPs) onto gold working electrodes (GWEs) were fabricated. Based on electrochemical impedance spectroscopy (EIS) results and cyclic voltammetry (CV) characteristics recorded in the development stages of the fabricated sensors, the sensors were electrochemically optimized and used in an integrated microfluidic platform to detect adiponectin/leptin via conductance signals and non-imprinted electrodes were used as references. To overcome the limitation of the low response signals after template binding non-conductive polyphenol (PP) and poliscopoletin (PS) were used for templates formation. Under optimized experimental conditions the conductance and resistance signals were obtained in the linear range of 0-50 µg ml-1 for A and 1-32 ng∙ml-1 for L with low limits of detection (0.25 µg ml-1 for A and 0.110 ng ml-1 for L). The dedicated platform exhibited an excellent response with great selectivity and stability. Finally, the proposed biomimetic sensors were successfully applied to enable the determination of A and L in human patient's serum with very high accuracy when compared to enzyme-linked immunosorbent assay ELISA reference methods.


Subject(s)
Adiponectin/blood , Biocompatible Materials/chemistry , Biosensing Techniques , Electrochemical Techniques , Leptin/blood , Biosensing Techniques/instrumentation , Electric Impedance , Electrochemical Techniques/instrumentation , Humans
9.
Talanta ; 178: 910-915, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29136915

ABSTRACT

We describe the preparation and validation of a novel lateral flow immunoassay test for the detection of human heart fatty acid binding protein (hFABP). Water-soluble CdTe quantum dots (QDs) were selected as the fluorescent label and were linked covalently to anti-hFABP antibodies. Upon conjugation, the secondary structure of the anti-hFABP was preserved and the fluorescence quantum yield of the CdTe QDs increased. The labelled antibodies were transferred to the immunoassay test strip and the antigen-antibody reaction was successfully performed. This evidenced the preserved antibody activity of QD-labelled anti-hFABP towards hFABP, and provided a rapid means for the quantitation of hFABP in human serum within the range of 0-160ng ∙ ml-1, with a much lower detection limit of 221pg.∙ ml-1 compared with other rapid tests based on lateral flow immunoassays. This new immunoassay test has been successfully used for the early detection of acute myocardial infarction.


Subject(s)
Blood Chemical Analysis/methods , Fatty Acid-Binding Proteins/blood , Immunoassay/methods , Limit of Detection , Quantum Dots/chemistry , Animals , Cadmium Compounds/chemistry , Calibration , Humans , Linear Models , Tellurium/chemistry
10.
Talanta ; 132: 37-43, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25476276

ABSTRACT

The fabrication of a capacitive interdigitated immunosensor (CID) based on a mixed self-assembled monolayer (mSAM) film for the direct detection of heart fatty-acid binding protein (h-FABP) without any labeling is described. The capacitance changes of mSAMs vs. homogenous ordered self-assembled monolayers (hSAMs) on gold work electrodes/covalently bonded antibodies/buffered medium are utilized for monitoring the specific antibody-antigen interaction. Capacitance measurements in the absence and presence of Faradaic currents were performed. The electrochemical properties of mixed monolayers were compared with those of a pure monolayer of 11-mercaptoundecanoic acid (MUA) self-assembled on gold surfaces. Taking into account the stability of the studied monolayers during the electrochemical experiments with the Faradaic process, the best SAM functionalization method was used for developing a sensitive capacitive immunosensor with a non-Faradaic process for direct immune detection of human h-FABP. Under the optimized conditions, the proposed mixed self-assembled monolayer (mSAM1) on gold electrode exhibited good insulating properties such as a capacitive behavior when detecting h-FABP from human serum in the range of 98 pg ml(-1)-100 ng ml(-1), with a detection limit of 0.836 ng ml(-1) comparative with a homogenous self-assembled monolayer (hSAM).


Subject(s)
Electrochemical Techniques/instrumentation , Fatty Acid-Binding Proteins/blood , Gold/chemistry , Immunoassay/instrumentation , Myocardium/chemistry , Animals , Antibodies/chemistry , Electric Capacitance , Electrodes , Fatty Acids/chemistry , Humans , Limit of Detection , Mice , Reproducibility of Results , Sulfhydryl Compounds/chemistry
11.
Int J Mol Sci ; 14(2): 3011-25, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23434655

ABSTRACT

The first step in determining whether a fluorescent dye can be used for antibody labeling consists in collecting data on its physical interaction with the latter. In the present study, the interaction between the 2-(2-hydroxy-5-nitrobenzylidene)-1,3-indanedione (HNBID) dye and the IgG1 monoclonal mouse antibody anti-human heart fatty acid binding protein (anti-hFABP) has been investigated by fluorescence and circular dichroism spectroscopies and complementary structural results were obtained by molecular modeling. We have determined the parameters characterizing this interaction, namely the quenching and binding constants, classes of binding sites, and excited state lifetimes, and we have predicted the localization of HNBID within the Fc region of anti-hFABP. The key glycosidic and amino acid residues in anti-hFABP interacting with HNBID have also been identified. A similar systematic study was undertaken for the well-known fluorescein isothiocyanate fluorophore, for comparison purposes. Our results recommend HNBID as a valuable alternative to fluorescein isothiocyanate for use as a fluorescent probe for IgG1 antibodies.

12.
Molecules ; 14(4): 1614-26, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19396020

ABSTRACT

Binding of a newly synthesized indanedione derivative, 2-(2-hydroxy-3-ethoxybenzylidene)-1,3-indanedione (HEBID), to human and bovine serum albumins (HSA and BSA), under simulated physiological conditions was monitored by fluorescence spectroscopy. The binding parameters (binding constants and number of binding sites) and quenching constants were determined according to literature models. The quenching mechanism was assigned to a Förster non-radiative energy transfer due to the HEBID-SA complex formation. A slightly increased affinity of HEBID for HSA was found, while the number of binding sites is approximately one for both albumins. The molecular distance between donor (albumin) and acceptor (HEBID) and the energy transfer efficiency were estimated, in the view of Förster's theory. The effect of HEBID on the protein conformation was investigated using circular dichroism and synchronous fluorescence spectroscopies. The results revealed partial unfolding in the albumins upon interaction, as well as changes in the local polarity around the tryptophan residues.


Subject(s)
Indans/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin/chemistry , Animals , Cattle , Circular Dichroism , Energy Transfer , Humans , Molecular Structure , Protein Binding , Protein Conformation , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...