Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 94(12): 126602, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15903944

ABSTRACT

In 1971 Goodman and Rose predicted the occurrence of a fundamental electrostatic limit for the photocurrent in semiconductors at high light intensities. Blends of conjugated polymers and fullerenes are an ideal model system to observe this space-charge limit experimentally, since they combine an unbalanced charge transport, long lifetimes, high charge carrier generation efficiencies, and low mobility of the slowest charge carrier. The experimental photocurrents reveal all the characteristics of a space-charge limited photocurrent: a one-half power dependence on voltage, a three-quarter power dependence on light intensity, and a one-half power scaling of the voltage at which the photocurrent switches into full saturation with light intensity.

2.
Phys Rev Lett ; 93(21): 216601, 2004 Nov 19.
Article in English | MEDLINE | ID: mdl-15601044

ABSTRACT

The photocurrent in conjugated polymer-fullerene blends is dominated by the dissociation efficiency of bound electron-hole pairs at the donor-acceptor interface. A model based on Onsager's theory of geminate charge recombination explains the observed field and temperature dependence of the photocurrent in PPV:PCBM blends. At room temperature only 60% of the generated bound electron-hole pairs are dissociated and contribute to the short-circuit current, which is a major loss mechanism in photovoltaic devices based on this material system.

SELECTION OF CITATIONS
SEARCH DETAIL
...