Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Cereb Blood Flow Metab ; : 271678X241261942, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879800

ABSTRACT

Apolipoprotein ε4 (APOE4) carriers develop brain metabolic dysfunctions decades before the onset of Alzheimer's disease (AD). A goal of the study is to identify if rapamycin, an inhibitor for the mammalian target of rapamycin (mTOR) inhibitor, would enhance synaptic and mitochondrial function in asymptomatic mice with human APOE4 gene (E4FAD) before they showed metabolic deficits. A second goal is to determine whether there may be genetic-dependent responses to rapamycin when compared to mice with human APOE3 alleles (E3FAD), a neutral AD genetic risk factor. We fed asymptomatic E4FAD and E3FAD mice with control or rapamycin diets for 16 weeks from starting from 3 months of age. Neuronal mitochondrial oxidative metabolism and excitatory neurotransmission rates were measured using in vivo 1H-[13C] proton-observed carbon-edited magnetic resonance spectroscopy, and isolated mitochondrial bioenergetic measurements using Seahorse. We found that rapamycin enhanced neuronal mitochondrial function, glutamate-glutamine cycling, and TCA cycle rates in the asymptomatic E4FAD mice. In contrast, rapamycin enhances glycolysis, non-neuronal activities, and inhibitory neurotransmission of the E3FAD mice. These findings indicate that rapamycin might be able to mitigate the risk for AD by enhancing brain metabolic functions for cognitively intact APOE4 carriers, and the responses to rapamycin are varied by APOE genotypes. Consideration of precision medicine may be needed for future rapamycin therapeutics.

2.
NMR Biomed ; 37(5): e5102, 2024 May.
Article in English | MEDLINE | ID: mdl-38263680

ABSTRACT

A unique feature of the tumor microenvironment is extracellular acidosis in relation to intracellular milieu. Metabolic reprogramming in tumors results in overproduction of H+ ions (and lactate), which are extruded from the cells to support tumor survival and progression. As a result, the transmembrane pH gradient (ΔpH), representing the difference between intracellular pH (pHi) and extracellular pH (pHe), is posited to be larger in tumors compared with normal tissue. Controlling the transmembrane pH difference has promise as a potential therapeutic target in cancer as it plays an important role in regulating drug delivery into cells. The current study shows successful development of an MRI/MRSI-based technique that provides ΔpH imaging at submillimeter resolution. We applied this technique to image ΔpH in rat brains with RG2 and U87 gliomas, as well as in mouse brains with GL261 gliomas. pHi was measured with Amine and Amide Concentration-Independent Detection (AACID), while pHe was measured with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). The results indicate that pHi was slightly higher in tumors (7.40-7.43 in rats, 7.39-7.47 in mice) compared with normal brain (7.30-7.38 in rats, 7.32-7.36 in mice), while pHe was significantly lower in tumors (6.62-6.76 in rats, 6.74-6.84 in mice) compared with normal tissue (7.17-7.22 in rats, 7.20-7.21 in mice). As a result, ΔpH was higher in tumors (0.64-0.81 in rats, 0.62-0.65 in mice) compared with normal brain (0.13-0.16 in rats, 0.13-0.16 in mice). This work establishes an MRI/MRSI-based platform for ΔpH imaging at submillimeter resolution in gliomas.


Subject(s)
Brain Neoplasms , Glioma , Rats , Mice , Animals , Proton-Motive Force , Brain Neoplasms/metabolism , Rodentia , Glioma/diagnostic imaging , Brain/metabolism , Magnetic Resonance Imaging/methods , Hydrogen-Ion Concentration , Tumor Microenvironment
3.
Neurosci Lett ; 820: 137607, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38141752

ABSTRACT

Magnetic resonance imaging plays an important role in characterizing microstructural changes and reorganization after traumatic injuries to the nervous system. In this study, we tested the feasibility of ex-vivo spinal cord diffusion tensor imaging (DTI) in combination with in vivo brain functional MRI to characterize spinal reorganization and its supraspinal association after a hemicontusion cervical spinal cord injury (SCI). DTI parameters (fractional anisotropy [FA], mean diffusion [MD]) and fiber orientation changes related to reorganization in the contused cervical spinal cord were compared to sham specimens. Altered fiber density and fiber directions occurred across the ipsilateral and contralateral hemicords but with only ipsilateral FA and MD changes. The hemicontusion SCI resulted in ipsilateral fiber breaks, voids and vivid fiber reorientations along the injury epicenter. Fiber directional changes below the injury level were primarily inter-hemispheric, indicating prominent below-level cross-hemispheric reorganization. In vivo resting state functional connectivity of the brain from the respective rats before obtaining the spinal cord samples indicated spatial expansion and increased connectivity strength across both the sensory and motor networks after SCI. The consistency of the neuroplastic changes along the neuraxis (both brain and spinal cord) at the single-subject level, indicates that distinctive reorganizational relationships exist between the spinal cord and the brain post-SCI.


Subject(s)
Cervical Cord , Spinal Cord Injuries , Rats , Animals , Diffusion Tensor Imaging/methods , Cervical Cord/injuries , Cervical Cord/pathology , Spinal Cord Injuries/pathology , Spinal Cord/pathology , Magnetic Resonance Imaging
4.
Sci Rep ; 13(1): 18628, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903784

ABSTRACT

Systemic lupus erythematosus (SLE) in males is rare and poorly understood. Thus, still little is known about sex differences in SLE. We set out to identify sex differences regarding clinical manifestations as well as renal and cardiovascular outcomes of SLE. We analyzed patient data from the Swiss SLE Cohort Study. Cumulative clinical manifestations according to the updated American College of Rheumatology criteria were recorded at inclusion. Cardiovascular events were recorded within Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SLICC-SDI). Renal failure was defined as eGFR < 15 ml/min/1.73 m2, initiation of renal replacement therapy or doubling of serum creatinine which were all assessed yearly or documented as end stage renal disease in SLICC-SDI. Risk differences were calculated using logistic regression and cox regression models. We analyzed 93 men and 529 women with a median follow up time of 2 years. Males were significantly older at diagnosis (44.4 versus 33.1 years, p < 0.001) and had less often arthritis (57% versus 74%, p = 0.001) and dermatological disorders (61% versus 76%, p < 0.01). In multivariate analysis female sex remained a significantly associated with arthritis and dermatological disorders. In multivariate analysis men had a significantly higher hazard ratio of 2.3 for renal failure (95% confidence interval (95%-CI) 1.1-5.2, p < 0.04). Total SLICC-SDI Score was comparable. Men had significantly more coronary artery disease (CAD) (17% versus 4%, p < 0.001) and myocardial infarction (10% versus 2%, p < 0.01). In multivariate analysis, male sex remained a significant risk factor for CAD (odds ratio (OR) 5.6, 95%-CI 2.3-13.7, p < 0.001) and myocardial infarction (OR 8.3, 95%-CI 2.1-32.6, p = 0.002). This first sex study in a western European population demonstrates significant sex differences in SLE. Male sex is a risk factor for cardiovascular events and renal failure in SLE. Potential etiological pathomechanisms such as hormonal or X-chromosomal factors remain to be further investigated.


Subject(s)
Arthritis , Kidney Failure, Chronic , Lupus Erythematosus, Systemic , Myocardial Infarction , Humans , Female , Male , Cohort Studies , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/diagnosis , Myocardial Infarction/complications , Kidney Failure, Chronic/etiology , Kidney Failure, Chronic/complications , Arthritis/complications , Severity of Illness Index
5.
Sci Transl Med ; 15(714): eadg8656, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37729432

ABSTRACT

Human diseases may be modeled in animals to allow preclinical assessment of putative new clinical interventions. Recent, highly publicized failures of large clinical trials called into question the rigor, design, and value of preclinical assessment. We established the Stroke Preclinical Assessment Network (SPAN) to design and implement a randomized, controlled, blinded, multi-laboratory trial for the rigorous assessment of candidate stroke treatments combined with intravascular thrombectomy. Efficacy and futility boundaries in a multi-arm multi-stage statistical design aimed to exclude from further study highly effective or futile interventions after each of four sequential stages. Six independent research laboratories performed a standard focal cerebral ischemic insult in five animal models that included equal numbers of males and females: young mice, young rats, aging mice, mice with diet-induced obesity, and spontaneously hypertensive rats. The laboratories adhered to a common protocol and efficiently enrolled 2615 animals with full data completion and comprehensive animal tracking. SPAN successfully implemented treatment masking, randomization, prerandomization inclusion and exclusion criteria, and blinded assessment of outcomes. The SPAN design and infrastructure provide an effective approach that could be used in similar preclinical, multi-laboratory studies in other disease areas and should help improve reproducibility in translational science.


Subject(s)
Ischemic Stroke , Stroke , Female , Humans , Male , Rats , Animals , Mice , Rodentia , Laboratories , Reproducibility of Results , Stroke/therapy
6.
Geroscience ; 45(3): 1667-1685, 2023 06.
Article in English | MEDLINE | ID: mdl-36626020

ABSTRACT

Based on the premise that physical activity/exercise impacts hippocampal structure and function, we investigated if hippocampal metabolites for neuronal viability and cell membrane density (i.e., N-acetyl aspartate (NAA), choline (Cho), creatine (Cr)) were higher in older adults performing supervised exercise compared to following national physical activity guidelines. Sixty-three participants (75.3 ± 1.9 years after 3 years of intervention) recruited from the Generation 100 study (NCT01666340_date:08.16.2012) were randomized into a supervised exercise group (SEG) performing twice weekly moderate- to high-intensity training, and a control group (CG) following national physical activity guidelines of ≥ 30-min moderate physical activity ≥ 5 days/week. Hippocampal body and head volumes and NAA, Cho, and Cr levels were acquired at 3T with magnetic resonance imaging and spectroscopic imaging. Sociodemographic data, peak oxygen uptake (VO2peak), exercise characteristics, psychological health, and cognition were recorded. General linear models were used to assess group differences and associations corrected for age, sex, education, and hippocampal volume. Both groups adhered to their training, where SEG trained at higher intensity. SEG had significantly lower NAA/Cr in hippocampal body than CG (p = 0.04). Across participants, higher training intensity was associated with lower Cho/Cr in hippocampal body (p < 0.001). Change in VO2peak, increasing VO2peak from baseline to 3 years, or VO2peak at 3 years were not associated with hippocampal neurochemicals. Lower NAA/Cr in hippocampal body was associated with poorer psychological health and slightly higher cognitive scores. Thus, following the national physical activity guidelines and not training at the highest intensity level were associated with the best neurochemical profile in the hippocampus at 3 years.


Subject(s)
Cognition , Magnetic Resonance Imaging , Humans , Aged , Cognition/physiology , Exercise/physiology , Educational Status , Hippocampus/metabolism
7.
Foods ; 11(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36553735

ABSTRACT

Post-translational modifications (PTMs) are covalent changes occurring on amino acid side chains of proteins and yet are neglected structural and functional aspects of protein architecture. The objective was to detect differences in PTM profiles that take place after roasting using open PTM search. We conducted a bottom-up proteomic study to investigate the impact of peanut roasting on readily soluble allergens and their PTM profiles. Proteomic PTM profiling of certain modifications was confirmed by Western blotting with a series of PTM-specific antibodies. In addition to inducing protein aggregation and denaturation, roasting may facilitate change in their PTM pattern and relative profiling. We have shown that Ara h 1 is the most modified major allergen in both samples in terms of modification versatility and extent. The most frequent PTM was methionine oxidation, especially in roasted samples. PTMs uniquely found in roasted samples were hydroxylation (Trp), formylation (Arg/Lys), and oxidation or hydroxylation (Asn). Raw and roasted peanut extracts did not differ in the binding of IgE from the serum of peanut-sensitised individuals done by ELISA. This study provides a better understanding of how roasting impacts the PTM profile of major peanut allergens and provides a good foundation for further exploration of PTMs.

8.
Stroke ; 53(5): 1802-1812, 2022 05.
Article in English | MEDLINE | ID: mdl-35354299

ABSTRACT

Cerebral ischemia and reperfusion initiate cellular events in brain that lead to neurological disability. Investigating these cellular events provides ample targets for developing new treatments. Despite considerable work, no such therapy has translated into successful stroke treatment. Among other issues-such as incomplete mechanistic knowledge and faulty clinical trial design-a key contributor to prior translational failures may be insufficient scientific rigor during preclinical assessment: nonblinded outcome assessment; missing randomization; inappropriate sample sizes; and preclinical assessments in young male animals that ignore relevant biological variables, such as age, sex, and relevant comorbid diseases. Promising results are rarely replicated in multiple laboratories. We sought to address some of these issues with rigorous assessment of candidate treatments across 6 independent research laboratories. The Stroke Preclinical Assessment Network (SPAN) implements state-of-the-art experimental design to test the hypothesis that rigorous preclinical assessment can successfully reduce or eliminate common sources of bias in choosing treatments for evaluation in clinical studies. SPAN is a randomized, placebo-controlled, blinded, multilaboratory trial using a multi-arm multi-stage protocol to select one or more putative stroke treatments with an implied high likelihood of success in human clinical stroke trials. The first stage of SPAN implemented procedural standardization and experimental rigor. All participating research laboratories performed middle cerebral artery occlusion surgery adhering to a common protocol and rapidly enrolled 913 mice in the first of 4 planned stages with excellent protocol adherence, remarkable data completion and low rates of subject loss. SPAN stage 1 successfully implemented treatment masking, randomization, prerandomization inclusion/exclusion criteria, and blinded assessment to exclude bias. Our data suggest that a large, multilaboratory, preclinical assessment effort to reduce known sources of bias is feasible and practical. Subsequent SPAN stages will evaluate candidate treatments for potential success in future stroke clinical trials using aged animals and animals with comorbid conditions.


Subject(s)
Brain Ischemia , Stroke , Aged , Animals , Brain , Brain Ischemia/therapy , Feasibility Studies , Humans , Infarction, Middle Cerebral Artery/therapy , Male , Mice , Stroke/therapy
9.
Anal Chem ; 94(5): 2536-2545, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35073049

ABSTRACT

Nuclear magnetic resonance (NMR) agents, composed of paramagnetic lanthanide ions (Ln3+) complexed with negatively charged cyclic chelating agents (Che(n+3)-) forming polyanionic lanthanide complexes (LnChen-), perturb sodium-23 (23Na) signals, a phenomenon which depends sodium ions (Na+) exchanging with LnChen-. We analyzed 23Na shiftability and broadening due to hyperfine and bulk magnetic susceptibility (BMS) effects that arise from LnChen- designs using selective Ln3+ ions (i.e., thulium, Tm3+; gadolinium, Gd3+; and europium, Eu3+) and macrocyclics derived from 1,4,7,10-tetraazacyclododecane (cyclen) [i.e., with phosphonate (DOTP8-) and carboxylate (DOTMA4-) arms] and 1,4,7-triazacyclononane (TACN) [i.e., with phosphonate (NOTP6-) arms]. All LnChen- complexes showed downfield shifts, but Gd3+ and Tm3+ agents, respectively, were dominated by BMS and hyperfine effects, in good agreement with theory. While 23Na shiftability and broadening were minimally affected by pH and competing cations (K+, Ca2+, and Mg2+) within physiological ranges, the 23Na shiftability and broadening were most sensitive to LnChen- concentration in relation to the interstitial Na+ level in vivo. Greatest 23Na shiftability and broadening were obtained with Tm3+ and Gd3+ agents, respectively. While BMS contribution to shiftability was most impacted by the number of unpaired electrons on Ln3+, negative charge on LnChen- regulated Na+ exchange for line broadening. In brain tumor models, TmDOTP5- with 23Na-NMR has been used previously to separate Na+ in intracellular, blood, and interstitial pools, while evidence here shows that GdDOTP5- can distinguish Na+ within intracellular and extracellular (i.e., blood and interstitial) pools. Given the biological importance of Na+ in vivo, future macrocyclic designs of LnChen- should be sought for 23Na-NMR biomedical applications.


Subject(s)
Lanthanoid Series Elements , Gadolinium/chemistry , Ions , Lanthanoid Series Elements/chemistry , Magnetic Resonance Spectroscopy , Sodium
10.
NMR Biomed ; 35(5): e4658, 2022 05.
Article in English | MEDLINE | ID: mdl-34837412

ABSTRACT

Chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS) methods differ respectively by detecting exchangeable and nonexchangeable proton signals by magnetic resonance. Because CEST contrast depends on both temperature and pH, simultaneous CEST and BIRDS imaging can be employed to separate these contributions. Here, we test if high-resolution pH imaging in vivo is possible with ratiometric CEST calibrated for temperature variations measured by BIRDS. Thulium- and europium-based DOTA-tetraglycinate agents, TmDOTA-(gly)4- and EuDOTA-(gly)4- , were used for high-resolution pH mapping in vitro and in vivo, using BIRDS for temperature adjustments needed for a more accurate ratiometric CEST approach. Although neither agent showed pH dependence with BIRDS in vitro in the pH range 6 to 8, each one's temperature sensitivity was enhanced when mixed because of increased redundancy. By contrast, the CEST signal of each agent was affected by the presence of the other agent in vitro. However, pH could be measured more accurately when temperature from BIRDS was detected. These in vitro calibrations with TmDOTA-(gly)4- and EuDOTA-(gly)4- enabled high-resolution pH imaging of glioblastoma in rat brains. It was concluded that temperature mapping with BIRDS can calibrate the ratiometric CEST signal from a cocktail of TmDOTA-(gly)4- and EuDOTA-(gly)4- agents to provide temperature-independent absolute pH imaging in vivo.


Subject(s)
Biosensing Techniques , Contrast Media , Animals , Biosensing Techniques/methods , Heterocyclic Compounds, 1-Ring , Hydrogen-Ion Concentration , Magnetic Resonance Imaging/methods , Rats
11.
NMR Biomed ; 35(6): e4687, 2022 06.
Article in English | MEDLINE | ID: mdl-34970801

ABSTRACT

Paramagnetic agents that utilize two mechanisms to provide physiological information by magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI) are described. MRI with chemical exchange saturation transfer (CEST) takes advantage of the agent's exchangeable protons (e.g., -OH or -NHx , where 2 ≥ x ≥ 1) to create pH contrast. The agent's incorporation of non-exchangeable protons (e.g., -CHy , where 3 ≥ y ≥ 1) makes it possible to map tissue temperature and/or pH using an MRSI method called biosensor imaging of redundant deviation in shifts (BIRDS). Hybrid probes based upon 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate chelate (DOTA4- ) and its methylated analog (1,4,7,10-tetraazacyclododecane-α, α', α″, α‴-tetramethyl-1,4,7,10-tetraacetate, DOTMA4- ) were synthesized, and modified to create new tetra-amide chelates. Addition of several methyl groups per pendent arm of the symmetrical chelates, positioned proximally and distally to thulium ions (Tm3+ ), gave rise to favorable BIRDS properties (i.e., high signal-to-noise ratio (SNR) from non-exchangeable methyl proton peaks) and CEST responsiveness (i.e., from amide exchangeable protons). Structures of the Tm3+ probes elucidate the influence of methyl group placement on sensor performance. An eight-coordinate geometry with high symmetry was observed for the complexes: Tm-L1 was based on DOTA4- , whereas Tm-L2 and Tm-L3 were based on DOTMA4- , where the latter contained an additional carboxylate at the distal end of each arm. The distance of Tm3+ from terminal methyl carbons is a key determinant for sustaining BIRDS temperature sensitivity without compromising CEST pH contrast; however, water solubility was influenced by introduction of hydrophobic methyl groups and hydrophilic carboxylate. Combined BIRDS and CEST detection of Tm-L2, which features two high-SNR methyl peaks and a strong amide CEST peak, should enable simultaneous temperature and pH measurements for high-resolution molecular imaging in vivo.


Subject(s)
Biosensing Techniques , Protons , Amides , Biosensing Techniques/methods , Chelating Agents , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
13.
BMC Chem ; 15(1): 31, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33952328

ABSTRACT

In this study, different drying methodologies (convective air, oven and microwave) of Myrtus communis L. (M. communis L.) leaves were conducted to investigate their effects on the levels of phenolic compounds, antioxidant capacity of ethanolic extracts (EEs) as well as the soybean oil oxidative stability. Drying methodology significantly influenced the extractability of phenolic compounds. Microwave drying led to an increase in the amounts of total phenols, flavonoids and proanthocyanidins followed by oven drying at 70 °C. Higher temperature of drying (100 and 120 °C) led to a significant reduction of their amounts (p < 0.05). An ultra-performance liquid chromatography method combined with high resolution mass spectroscopic detection was used to analyze the phenolic fraction of extracts. Higher amounts of the identified compounds were observed when leaves were heat treated. Furthermore, the evaluation of the antioxidant activity showed that the studied extracts possess in general high antioxidant capacities, significantly dependent on the employed drying methodology. The incorporation of the different extracts at 200 ppm in soybean oil showed that its oxidative stability was significantly improved. Extracts from leaves treated with microwave (EE_MW) and at 70 °C (EE_70) have better effect than BHT. The results of the present study suggest that microwave drying could be useful to enhance the extractability of phenolic compounds and the antioxidant capacity of M. communis L. leaf extract.

14.
Sci Rep ; 11(1): 6710, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758290

ABSTRACT

Under normal conditions, high sodium (Na+) in extracellular (Na+e) and blood (Na+b) compartments and low Na+ in intracellular milieu (Na+i) produce strong transmembrane (ΔNa+mem) and weak transendothelial (ΔNa+end) gradients respectively, and these manifest the cell membrane potential (Vm) as well as blood-brain barrier (BBB) integrity. We developed a sodium (23Na) magnetic resonance spectroscopic imaging (MRSI) method using an intravenously-administered paramagnetic polyanionic agent to measure ΔNa+mem and ΔNa+end. In vitro 23Na-MRSI established that the 23Na signal is intensely shifted by the agent compared to other biological factors (e.g., pH and temperature). In vivo 23Na-MRSI showed Na+i remained unshifted and Na+b was more shifted than Na+e, and these together revealed weakened ΔNa+mem and enhanced ΔNa+end in rat gliomas (vs. normal tissue). Compared to normal tissue, RG2 and U87 tumors maintained weakened ΔNa+mem (i.e., depolarized Vm) implying an aggressive state for proliferation, whereas RG2 tumors displayed elevated ∆Na+end suggesting altered BBB integrity. We anticipate that 23Na-MRSI will allow biomedical explorations of perturbed Na+ homeostasis in vivo.


Subject(s)
Blood-Brain Barrier/metabolism , Glioma/metabolism , Sodium/metabolism , Biological Transport , Biomarkers , Energy Metabolism , Glioma/diagnostic imaging , Glioma/pathology , Magnetic Resonance Imaging , Spectrum Analysis
15.
Foods ; 9(11)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143174

ABSTRACT

The aim of this study was to identify short digestion-resistant peptides (SDRPs) released by pepsin digestion of the whole cow's milk and examine their IgE reactivity and allergenicity. Raw milk was subjected to simulated gastric digestion. SDRPs were fractionated from the digests and identified by MS. Milk SDRPs were evaluated for aggregability, propensity to compete for IgE binding with individual milk allergens, and ability to bind IgG4 from allergic and milk-tolerant individuals. The majority of milk SDRPs originated from caseins (97% of peptides) and overlapped with the known IgE epitopes of cow's milk allergens. SDRPs competed with milk proteins for binding to human IgE and readily formed aggregates. The average peptide length was 10.6 ± 3.5 amino acids. The ability to provoke allergenic in vivo responses was confirmed by skin-prick testing (SPT) in five milk-allergic subjects. This was attributed to the peptide ability to aggregate into non-covalent complexes. SDRPs are able to induce response in SPT, but only in 50% of the sera SDRPs were able to inhibit IgG4 binding to caseins. Hence, SDRPs corresponding to the mainly continuous epitopes of milk proteins induce allergenic in vivo responses in milk-allergic subjects due to aggregation.

16.
Angew Chem Int Ed Engl ; 59(23): 9094-9101, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32154631

ABSTRACT

The selective hydrolysis of proteins by non-enzymatic catalysis is difficult to achieve, yet it is crucial for applications in biotechnology and proteomics. Herein, we report that discrete hafnium metal-oxo cluster [Hf18 O10 (OH)26 (SO4 )13 ⋅(H2 O)33 ] (Hf18 ), which is centred by the same hexamer motif found in many MOFs, acts as a heterogeneous catalyst for the efficient hydrolysis of horse heart myoglobin (HHM) in low buffer concentrations. Among 154 amino acids present in the sequence of HHM, strictly selective cleavage at only 6 solvent accessible aspartate residues was observed. Mechanistic experiments suggest that the hydrolytic activity is likely derived from the actuation of HfIV Lewis acidic sites and the Brønsted acidic surface of Hf18 . X-ray scattering and ESI-MS revealed that Hf18 is completely insoluble in these conditions, confirming the HHM hydrolysis is caused by a heterogeneous reaction of the solid Hf18 cluster, and not from smaller, soluble Hf species that could leach into solution.


Subject(s)
Hafnium/chemistry , Oxygen/chemistry , Proteolysis , Animals , Biomimetic Materials/chemistry , Buffers , Catalysis , Horses , Hydrolysis , Myoglobin/chemistry , Solvents/chemistry
17.
J Biol Inorg Chem ; 25(2): 253-265, 2020 03.
Article in English | MEDLINE | ID: mdl-32020293

ABSTRACT

The reactions of four cymene-capped ruthenium(II) compounds with pro-apoptotic protein, cytochrome c (Cyt), and anti-proliferative protein lysozyme (Ly) in carbonate buffer were investigated by ESI-MS, UV-vis absorption, and CD spectroscopy. The complexes with two chloride ligands (C2 and C3) were more reactive toward proteins than those with only one (C1 and C4), and the complex with S,N-chelating ligand (C4) was less reactive than one with O,N-chelating ligand (C1). Dehalogenated complexes are most likely species, initially coordinating proteins for all tested complexes. During the time, protein adducts vividly exchanged non-arene organic ligand L with CO32- and OH-, while cymene moiety was retained. In water, only dehalogenated adducts were identified suggesting that in vivo, in the presence of various anions, dynamic ligand exchange could generate different intermediate protein species. Although all complexes reduced Cyt, the reduction was not dependent on their reactivity to protein, implying that initially noncovalent binding to Cyt occurs, causing its reduction, followed by coordination to protein. Cyt reduction was accompanied with rupture of ferro-Met 80 and occupation of this hem coordination site by a histidine His-33/26. Therefore, in Cyt with C2 and C3, less intensive reduction of hem iron leaves more unoccupied target residues for Ru coordination, leading to more efficient formation of covalent adducts, in comparison to C1 and C4. This study contributes to development of new protein-targeted Ru(II) cymene complexes, and to the design of new cancer therapies based on targeted delivery of Ru(II) arene complexes bound on pro-apoptotic/anti-proliferative proteins as vehicles.


Subject(s)
Coordination Complexes/chemistry , Cymenes/chemistry , Cytochromes c/chemistry , Muramidase/chemistry , Ruthenium/chemistry , Molecular Conformation , Muramidase/metabolism
19.
Food Chem ; 269: 43-52, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30100456

ABSTRACT

In this study, we investigated structural aspects of covalent binding of food derived blue pigment phycocyanobilin (PCB) to bovine ß-lactoglobulin (BLG), major whey protein, by spectroscopic, electrophoretic, mass spectrometry and computational methods. At physiological pH (7.2), we found that covalent pigment binding via free cysteine residue is slow (ka = 0.065 min-1), of moderate affinity (Ka = 4 × 104 M-1), and stereo-selective. Binding also occurs at a broad pH range and under simulated gastrointestinal conditions. Adduct formation rises with pH, and in concentrated urea (ka = 0.101 min-1). The BLG-PCB adduct has slightly altered secondary and tertiary protein structure, and bound PCB has higher fluorescence and more stretched conformation than free chromophore. Combination of steered molecular dynamic for disulfide exchange, non-covalent and covalent docking, favours Cys119 residue in protein calyx as target for covalent BLG-PCB adduct formation. Our results suggest that this adduct can serve as delivery system of bioactive PCB.


Subject(s)
Lactoglobulins/chemistry , Phycobilins/chemistry , Phycocyanin/chemistry , Animals , Binding Sites , Cattle , Hydrogen-Ion Concentration , Pigmentation
20.
J BUON ; 23(6): 1867-1873, 2018.
Article in English | MEDLINE | ID: mdl-30610815

ABSTRACT

PURPOSE: Bone and soft tissue tumors are rare. There is a variety of types and each one has its own particular behavior, treatment and patient outcome. The assessment of treatment response following the 3rd cycle of chemotherapy is one of the most important aspects of patient care, as therapeutic options and the timing of surgery may vary depending on the achievement of response. Hence, we focused on the advanced imaging technique, proton magnetic resonance spectroscopy (1H MRS), aiming at improving the diagnostic accuracy and the tumor response to therapy, based on the absolute concentration of choline (Cho) as biomarker of malignancy. METHODS: Twenty patients were studied. All of them had a pathological diagnosis after biopsy. MRI examinations were performed using a 1.5 T MR scanner (Avanto; Siemens, Erlangen, Germany). Single-voxel 1H MR spectroscopy was performed by using a PRESS with TR/TE 1530/100 ms, before chemotherapy and after the 3rd cycle. 1H MRS was processed in LCmodel. RESULTS: Of 20 patients, 7 responded to neoadjuvant chemotherapy and 13 did not. In responders, the mean concentration of tCho before therapy was 4.7±2.5 mmol/kg, which showed statistically significant reduction after therapy. In non-responders, the mean tCho concentration before therapy was 2.9±0.9 mmol/kg which remained the same or increased after the 3rd cycle of neoadjuvant chemotherapy (2.7±2.5 mmol/kg; range from 2.05 to 5.79 with no statistical significance). Compared to reference healthy group, tCho concentrations were increased in all cases. CONCLUSIONS: 1H MRS appears to be valuable technique for evaluation of response to neoadjuvant chemotherapy of patients with musculoskeletal tumors (MSK).


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Musculoskeletal Diseases/pathology , Neoadjuvant Therapy/methods , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Male , Middle Aged , Musculoskeletal Diseases/drug therapy , Prognosis , ROC Curve , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...