Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 880: 163232, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37023817

ABSTRACT

Forest fire research over the last several decades has improved the understanding of fire emissions and impacts. Nevertheless, the evolution of forest fire plumes remains poorly quantified and understood. Here, a Lagrangian chemical transport model, the Forward Atmospheric Stochastic Transport model coupled with the Master Chemical Mechanism (FAST-MCM), has been developed to simulate the transport and chemical transformations of plumes from a boreal forest fire over several hours since their emission. The model results for NOx (NO and NO2), O3, HONO, HNO3, pNO3 and 70 VOC species are compared with airborne in-situ measurements within plume centers and their surrounding portions during the transport. Comparisons between simulation results and measurements show that the FAST-MCM model can properly reproduce the physical and chemical evolution of forest fire plumes. The results indicate that the model can be an important tool used to aid the understanding of the downwind impacts of forest fire plumes.

2.
Environ Sci Technol ; 54(23): 14936-14945, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33186032

ABSTRACT

An "event-based" approach to characterize complex air pollutant mixtures was applied in the Oil Sands region of northern Alberta, Canada. This approach was developed to better-inform source characterization and attribution of the air pollution in the Indigenous community of Fort McKay, within the context of the lived experience of residents. Principal component analysis was used to identify the characteristics of primary pollutant mixtures, which were related to hydrocarbon emissions, fossil fuel combustion, dust, and oxidized and reduced sulfur compounds. Concentration distributions of indicator compounds were used to isolate sustained air pollution "events". Diesel-powered vehicles operating in the mines were found to be an important source during NOx events. Industry-specific volatile organic compound (VOC) profiles were used in a chemical mass balance model for source apportionment, which revealed that nearby oil sands operations contribute to 86% of the total mass of nine VOC species (2-methylpentane, hexane, heptane, octane, benzene, toluene, m,p-xylene, o-xylene, and ethylbenzene) during VOC events. Analyses of the frequency distribution of air pollution events indicate that Fort McKay is regularly impacted by multiple mixtures simultaneously, underscoring the limitations of an exceedance-based approach relying on a small number of air quality standards as the only tool to assess risk.


Subject(s)
Air Pollutants , Air Pollution , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution/analysis , Alberta , Environmental Monitoring , Oil and Gas Fields , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...