Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 290: 120236, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34953891

ABSTRACT

AIMS: We have recently described a novel guanidinium-based compound, VP79s, which induces cytotoxicity in various cancer cell lines. Here, we aim to investigate the activity of VP79s and associated mechanisms of action in multiple myeloma (MM) cells in vitro and ex vivo. MAIN METHODS: The effects of VP79s on cell viability and induction of apoptosis was examined in a panel of drug-sensitive and drug-resistant MM cell lines, as well as ex vivo patient samples and normal donor lymphocytes and platelets. Cell signaling pathways associated with the biological effects of VP79s were analysed by immunoblotting and flow cytometry. Gene expression changes were assessed by quantitative real-time PCR analysis. KEY FINDINGS: VP79s was found to rapidly inhibit both constitutively active and IL-6-induced STAT3 signaling with concurrent downregulation of the IL-6 receptors, CD130 and CD126. VP79s induced a rapid and dose-dependent downregulation of anti-apoptotic Bcl-2 family member, myeloid cell leukaemia-1 (MCL-1). VP79s enhanced bortezomib induced cell death and was also found to overcome bone marrow stromal cell induced drug resistance. VP79s exhibited activity in ex vivo patient samples at concentrations which had no effect on peripheral blood mononuclear cells, lymphocytes and platelets isolated from healthy donors. SIGNIFICANCE: As VP79s resulted in rapid inhibition of the key IL-6/STAT3 signaling pathway and downregulation of MCL-1 expression with subsequent selective anti-myeloma activity, VP79s may be a potential therapeutic agent with a novel mechanism of action in MM cells.


Subject(s)
Guanidine/pharmacology , Multiple Myeloma/drug therapy , STAT3 Transcription Factor/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression/genetics , Gene Expression Regulation, Leukemic/drug effects , Gene Expression Regulation, Leukemic/genetics , Guanidine/analogs & derivatives , Humans , Interleukin-6/metabolism , Janus Kinase 1/metabolism , Janus Kinases/metabolism , Leukemia/drug therapy , Leukocytes, Mononuclear/metabolism , Multiple Myeloma/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cells , STAT3 Transcription Factor/drug effects , Signal Transduction/drug effects
2.
Eur J Med Chem ; 209: 112947, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33139112

ABSTRACT

Compounds with excellent receptor engagement displaying α2-AR antagonist activity are useful not only for therapeutic purposes (e.g. antidepressants), but also to help in the crystallization of this particular GPCR. Therefore, based on our broad experience in the topic, we have prepared eighteen di-aryl (phenyl and/or pyridin-2-yl) mono- or di-substituted guanidines and 2-aminoimidazolines. The in vitro α2-AR binding affinity experiments in human brain tissue showed the advantage of a 2-aminoimidazolinium cation, a di-arylmethylene core, a conformationally locked pyridin-2-yl-guanidine and a di-substituted guanidinium to achieve good α2-AR engagement. After different in vitro [35S]GTPγS binding experiments in human prefrontal cortex tissue, it was possible to identify that compounds 7a, 7b and 7c were α2-AR partial agonist, whereas 8h was a potent α2-AR antagonist. Docking and MD studies with a model of α2A-AR and two crystal structures suggest that antagonism is achieved by compounds carrying a di-substituted guanidine which substituent occupy a pocket adjacent to TM5 without engaging S2005.42 or S2045.46, and a mono-substituted cationic group, which favorably interacts with E942.65.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists/chemical synthesis , Antidepressive Agents/chemical synthesis , Guanidine/chemical synthesis , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Animals , Antidepressive Agents/pharmacology , Brain , Drug Design , Guanidine/pharmacology , Guanidines/chemistry , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Imidazolines/chemistry , Models, Molecular , Protein Binding , Structure-Activity Relationship
3.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371382

ABSTRACT

We previously identified a guanidinium-based lead compound that inhibited BRAF through a hypothetic type-III allosteric mechanism. Considering the pharmacophore identified in this lead compound (i.e., "lipophilic group", "di-substituted guanidine", "phenylguanidine polar end"), several modifications were investigated to improve its cytotoxicity in different cancer cell lines. Thus, several lipophilic groups were explored, the di-substituted guanidine was replaced by a secondary amine and the phenyl ring in the polar end was substituted by a pyridine. In a structure-based design approach, four representative derivatives were docked into an in-house model of an active triphosphate-containing BRAF protein, and the interactions established were analysed. Based on these computational studies, a variety of derivatives was synthesized, and their predicted drug-like properties calculated. Next, the effect on cell viability of these compounds was assessed in cell line models of promyelocytic leukaemia and breast, cervical and colorectal carcinomas. The potential of a selection of these compounds as apoptotic agents was assessed by screening in the promyelocytic leukaemia cell line HL-60. The toxicity against non-tumorigenic epithelial MCF10A cells was also investigated. These studies allowed for several structure-activity relationships to be derived. Investigations on the mechanism of action of representative compounds suggest a divergent effect on inhibition of the MAPK/ERK signalling pathway.

4.
Eur J Med Chem ; 181: 111544, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31374420

ABSTRACT

There is a growing interest in the cancer cell growth inhibitory effects of organotin (IV) compounds and, accordingly, a new series of dimethyl-, di-(n-butyl)-, diphenyl- and chloro-phenyl tin(IV) complexes with a Schiff base core were prepared. Their binding to DNA was assessed by UV thermal denaturation showing no interaction and by UV-vis titration exhibiting moderate interaction by intercalation. Complexes having n-butyl substituents were more potent and cytotoxic against human leukemia, breast and cervical cancer cell lines than other organotin(IV) complexes tested. Unfortunately, some of these compounds showed similar cytotoxicity in a non-cancerous cell line. We may conclude that cytotoxic activity was dependent on the nature (lipophilicity and size, according to the structure-activity relationship studies) and substitution pattern on the different structures. These results may aid in the rational design of metallodrugs, expanding the scope of organotin complexes in formulating new metal based drugs with dibutyl moieties.


Subject(s)
Antineoplastic Agents/pharmacology , Organotin Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HL-60 Cells , HeLa Cells , Humans , MCF-7 Cells , Molecular Structure , Organotin Compounds/chemical synthesis , Organotin Compounds/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...