Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(12): 6994-7011, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38828775

ABSTRACT

The clinical success of PARP1/2 inhibitors (PARPi) prompts the expansion of their applicability beyond homologous recombination deficiency. Here, we demonstrate that the loss of the accessory subunits of DNA polymerase epsilon, POLE3 and POLE4, sensitizes cells to PARPi. We show that the sensitivity of POLE4 knockouts is not due to compromised response to DNA damage or homologous recombination deficiency. Instead, POLE4 loss affects replication speed leading to the accumulation of single-stranded DNA gaps behind replication forks upon PARPi treatment, due to impaired post-replicative repair. POLE4 knockouts elicit elevated replication stress signaling involving ATR and DNA-PK. We find POLE4 to act parallel to BRCA1 in inducing sensitivity to PARPi and counteracts acquired resistance associated with restoration of homologous recombination. Altogether, our findings establish POLE4 as a promising target to improve PARPi driven therapies and hamper acquired PARPi resistance.


Subject(s)
BRCA1 Protein , DNA Polymerase II , DNA Replication , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , DNA Polymerase II/metabolism , DNA Polymerase II/genetics , DNA Replication/drug effects , DNA Damage , Cell Line, Tumor , Homologous Recombination/genetics , Homologous Recombination/drug effects , Drug Resistance, Neoplasm/genetics
SELECTION OF CITATIONS
SEARCH DETAIL