Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36772373

ABSTRACT

A study that evaluated the use of ultrasonic-guided waves to detect water in hollow pipes is presented. In this work, a guided wave system employed a 40 kHz piezoelectric (PZT) transmitter and a PZT ultrasound transducer. The transmitter was based on a battery-operated microcontroller, and the receiver was composed of a digital signal processor (DSP) module connected to a PC via a USB for monitoring purposes. The transmitter and receiver were attached, non-intrusively without perfect alignment, to the external wall of a steel tube 1 m × 270 mm × 2 mm in size. Flood detection was performed based on guided wave attenuation due to energy leakage from the internal steel wall of the tube to water. Two approaches were carried out. The former was an off-line signal response based on the wavelet energy entropy analysis of a received pulse; the latter was a real-time hit-and-miss analysis centered on measuring the time-space in-between two transmitted pulses. Experiments performed in the laboratory successfully identified flooded tubes.

2.
Sensors (Basel) ; 20(3)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041236

ABSTRACT

Alternative wireless data communication systems are a necessity in industries that operate in harsh environments such as the oil and gas industry. Ultrasonic guided wave propagation through solid metallic structures, such as metal barriers, rods, and multiwire cables, have been proposed for data transmission purposes. In this context, multiwire cables have been explored as a communication media for the transmission of encoded ultrasonic guided waves. This work presents the proprietary hardware design and implementation of an automatic data transmission system based on the propagation of ultrasonic guided waves using as communication channels a high-temperature and corrosion-resistant oil industry multiwire cable. A dedicated communication protocol has been implemented at physical and data link layers, which involved pulse position modulation (PPM), digital signal processing (DSP), and an integrity validation byte. The data transmission system was composed of an ultrasonic guided waves PPM encoded data transmitter, a 1K22 MP-35N multiwire cable, a hardware preamplifier, a data acquisition module, a real-time (RT) DSP LabVIEW (National Instruments, Austin, TX) based demodulator, and a human-machine interface (HMI) running on a personal computer. To evaluate the communication system, the transmitter generated 60 kHz PPM energy packets containing three different bytes and their corresponding integrity validation bytes. Experimental tests were conducted in the laboratory using 1 and 10 m length cables. Although a dispersive solid elastic media was used as a communication channel, results showed that digital data transmission rates, up to 470 bps, were effectively validated.

SELECTION OF CITATIONS
SEARCH DETAIL
...