Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Microbiome ; 7(1): 106, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31311598

ABSTRACT

BACKGROUND: Streptococcus pneumoniae is a significant global pathogen that colonises the nasopharynx of healthy children. Pneumococcal conjugate vaccines, which reduce nasopharyngeal colonisation of vaccine-type S. pneumoniae, may have broader effects on the nasopharyngeal microbiota; however, data are limited. In Fiji, nasopharyngeal carriage prevalence of S. pneumoniae and other colonising species differ between the two main ethnic groups. Here, we examined the association between the 7-valent pneumococcal conjugate vaccine (PCV7) and the nasopharyngeal microbiota of children in Fiji, including for each of the two main ethnic groups-indigenous Fijians (iTaukei) and Fijians of Indian descent (FID). METHOD: The nasopharyngeal microbiota of 132 Fijian children was examined using nasopharyngeal swabs collected from 12-month-old iTaukei and FID children who were vaccinated (3 doses PCV7) or unvaccinated in infancy as part of a phase II randomised controlled trial. Microbiota composition was determined by sequencing the V4 region of the 16S rRNA gene. Species-specific carriage of S. pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Staphylococcus aureus was determined using real-time quantitative PCR. Associations between microbiota composition and other host and environmental factors were considered in the analysis. RESULTS: PCV7 had no overall impact on microbial diversity or composition. However, ethnic differences were observed in both diversity and composition with iTaukei children having higher relative abundance of Moraxella (p = 0.004) and Haemophilus (p = 0.004) and lower relative abundance of Staphylococcus (p = 0.026), Dolosigranulum (p = 0.004) and Corynebacterium (p = 0.003) compared with FID children. Further, when we stratified by ethnicity, associations with PCV7 could be detected: vaccinated iTaukei children had a lower relative abundance of Streptococcus and Haemophilus compared with unvaccinated iTaukei children (p = 0.022 and p = 0.043, respectively); and vaccinated FID children had a higher relative abundance of Dolosigranulum compared with unvaccinated FID children (p = 0.037). Children with symptoms of an upper respiratory tract infection (URTI) had a significantly different microbiota composition to children without symptoms. The microbiota composition of iTaukei children without URTI symptoms was most similar to the microbiota composition of FID children with URTI symptoms. CONCLUSIONS: Associations between PCV7 and nasopharyngeal microbiota differed within each ethnic group. This study highlights the influence that ethnicity and URTIs have on nasopharyngeal microbiota.


Subject(s)
Carrier State/ethnology , Carrier State/microbiology , Heptavalent Pneumococcal Conjugate Vaccine/administration & dosage , Microbiota , Nasopharynx/microbiology , Respiratory Tract Infections/ethnology , Respiratory Tract Infections/microbiology , Bacteria/classification , Ethnicity , Female , Fiji/epidemiology , Humans , India/ethnology , Infant , Male , Pneumococcal Infections/ethnology , Pneumococcal Infections/prevention & control , Prevalence , RNA, Ribosomal, 16S/genetics , Streptococcus pneumoniae/genetics , Vaccination
3.
ERJ Open Res ; 4(4)2018 Oct.
Article in English | MEDLINE | ID: mdl-30519565

ABSTRACT

Acute respiratory tract infections (ARI) in infancy have been implicated in the development of chronic respiratory disease, but the complex interplay between viruses, bacteria and host is not completely understood. We aimed to prospectively determine whether nasal microbiota changes occur between the onset of the first symptomatic ARI in the first year of life and 3 weeks later, and to explore possible associations with the duration of respiratory symptoms, as well as with host, environmental and viral factors. Nasal microbiota of 167 infants were determined at both time-points by 16S ribosomal RNA-encoding gene PCR amplification and subsequent pyrosequencing. Infants were clustered based on their nasal microbiota using hierarchical clustering methods at both time-points. We identified five dominant infant clusters with distinct microbiota at the onset of ARI but only three clusters after 3 weeks. In these three clusters, symptom persistence was overrepresented in the Streptococcaceae-dominated cluster and underrepresented in the cluster dominated by "Others" (p<0.001). Duration of symptoms was not associated with the type of respiratory virus. Infants with prolonged respiratory symptoms after their first ARI tend to exhibit distinct microbial compositions, indicating close microbiota-host interactions that seem to be of importance for symptom persistence and recovery.

4.
ERJ Open Res ; 4(3)2018 Jul.
Article in English | MEDLINE | ID: mdl-29992131

ABSTRACT

Compartmentalisation of the respiratory tract microbiota in patients with different chronic obstructive pulmonary disease (COPD) severity degrees needs to be systematically investigated. In addition, it is unknown if the inflammatory and emphysematous milieux in patients with COPD are associated with changes in the respiratory tract microbiota and host macrophage gene expression. We performed a cross-sectional study to compare non-COPD controls (n=10) to COPD patients (n=32) with different disease severity degrees. Samples (n=187) were obtained from different sites of the upper and lower respiratory tract. Microbiota analyses were performed by 16S ribosomal RNA gene sequencing and host gene expression analyses by quantitative real-time PCR of distinct markers of bronchoalveolar lavage cells. Overall, the microbial communities of severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grade 3/4) patients clustered significantly differently to controls and less severe COPD (GOLD 1/2) patients (permutational multivariate ANOVA (MANOVA), p=0.001). However, we could not detect significant associations between the different sampling sites in the lower airways. In addition, the chosen set of host gene expression markers significantly separated COPD GOLD 3/4 patients, and we found correlations between the composition of the microbiota and the host data. In conclusion, this study demonstrates associations between host gene expression and microbiota profiles that may influence the course of COPD.

5.
Microbiome ; 5(1): 85, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28738889

ABSTRACT

BACKGROUND: Bacterial colonization of the upper airways is a prerequisite for subsequent invasive disease. With the introduction of the 7- and 13-valent pneumococcal conjugate vaccines (PCV7 and PCV13), changes in pneumococcal upper airway colonization have been described. It is, however, less evident whether the vaccines lead to compositional changes of the upper airway microbiota. Here, we performed a case-control study using samples from a longitudinal infant cohort from Switzerland. We compared pneumococcal carriage and the nasal microbiota within the first year of life of healthy infants vaccinated with either PCV7 (n = 20, born in 2010) or PCV13 (n = 21, born between 2011 and 2013). Nasal swabs were collected every second week (n = 763 in total). Pneumococcal carriage was analyzed by quantitative PCR of the pneumococcal-specific lytA gene. Analysis of the bacterial core microbiota was performed based on 16S rRNA sequencing and subsequent oligotyping. We exclusively performed oligotyping of the core microbiota members, which were defined as the five most abundant bacterial families (Moraxellaceae, Streptococcaceae, Staphylococcaceae, Corynebacteriaceae, and Pasteurellaceae). Linear mixed effect (LME) and negative binomial regression models were used for statistical analyses. RESULTS: We found a higher number of samples positive for pneumococcal carriage in PCV7- compared to PCV13-vaccinated infants (LME model; P = 0.01). In contrast, infants vaccinated in the PCV13 era had an increased alpha diversity as measured by the richness and the Shannon Diversity Index (LME model; P = 0.003 and P = 0.01, respectively). Accordingly, the PCV13 era was associated with clusters of a higher diversity than PCV7-associated clusters. Furthermore, infants vaccinated with PCV13 had a higher binary-based within-subject microbiota similarity, as well as a decreased Jensen-Shannon distance over time as compared to PCV7-vaccinated infants, indicating a higher microbiota stability in the PCV13 era (LME model and t test; P = 0.06 and P = 0.03, respectively). CONCLUSIONS: We hypothesize that the higher diversity and stability of the upper airway microbiota in the PCV13 era is the result of the lower pneumococcal carriage rate. This seems to indicate that the nasal bacterial microbiota of infants has changed in recent years as compared to the beginning of this study.


Subject(s)
Carrier State/microbiology , Heptavalent Pneumococcal Conjugate Vaccine/administration & dosage , Nasopharynx/microbiology , Nose/microbiology , Pneumococcal Vaccines/administration & dosage , Streptococcus pneumoniae/isolation & purification , Case-Control Studies , Cohort Studies , Female , Genes, Bacterial , Healthy Volunteers , High-Throughput Nucleotide Sequencing , Humans , Infant , Longitudinal Studies , Male , Microbiota/genetics , Pneumococcal Infections/epidemiology , Pneumococcal Infections/microbiology , Pneumococcal Infections/prevention & control , RNA, Ribosomal, 16S , Real-Time Polymerase Chain Reaction , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/physiology , Switzerland/epidemiology
6.
mSphere ; 1(6)2016.
Article in English | MEDLINE | ID: mdl-27904883

ABSTRACT

Traditional culture techniques have shown that increased bacterial colonization is associated with viral colonization; however, the influence of viral colonization on the whole microbiota composition is less clear. We thus aimed to understand the interaction of viral infections and the nasal microbiota in early life to appraise their roles in disease development. Thirty-two healthy, unselected infants were included in this prospective longitudinal cohort study within the first year of life. Biweekly nasal swabs (n = 559) were taken, and the microbiota was analyzed by 16S rRNA pyrosequencing, and 10 different viruses and 2 atypical bacteria were characterized by real-time PCR (combination of seven duplex samples). In contrast to asymptomatic human rhinovirus (HRV) colonization, symptomatic HRV infections were associated with lower alpha diversity (Shannon diversity index [SDI]), higher bacterial density (PCR concentration), and a difference in beta diversities (Jaccard and Bray-Curtis index) of the microbiota. In addition, infants with more frequent HRV infections had a lower SDI at the end of the study period. Overall, changes in the microbiota associated with symptomatic HRV infections were characterized by a loss of microbial diversity. The interaction between HRV infections and the nasal microbiota in early life might be of importance for later disease development and indicate a potential approach for future interventions. IMPORTANCE Respiratory viral infections are very frequent in infancy and of importance in acute and chronic disease development. Infections with human rhinovirus (HRV) are, e.g., associated with the later development of asthma. We found that only symptomatic HRV infections were associated with acute changes in the nasal microbiota, mainly characterized by a loss of microbial diversity. Infants with more frequent symptomatic HRV infections had a lower bacterial diversity at the end of the first year of life. Whether the interaction between viruses and the microbiota is one pathway contributing to asthma development will be assessed in the follow-ups of these children. Independent of that, measurements of microbial diversity might represent a potential marker for risk of later lung disease or monitoring of early life interventions.

7.
Lancet Respir Med ; 4(8): 627-635, 2016 08.
Article in English | MEDLINE | ID: mdl-27180018

ABSTRACT

BACKGROUND: Respiratory tract infections and subsequent airway inflammation occur early in the life of infants with cystic fibrosis. However, detailed information about the microbial composition of the respiratory tract in infants with this disorder is scarce. We aimed to undertake longitudinal in-depth characterisation of the upper respiratory tract microbiota in infants with cystic fibrosis during the first year of life. METHODS: We did this prospective cohort study at seven cystic fibrosis centres in Switzerland. Between Feb 1, 2011, and May 31, 2014, we enrolled 30 infants with a diagnosis of cystic fibrosis. Microbiota characterisation was done with 16S rRNA gene pyrosequencing and oligotyping of nasal swabs collected every 2 weeks from the infants with cystic fibrosis. We compared these data with data for an age-matched cohort of 47 healthy infants. We additionally investigated the effect of antibiotic treatment on the microbiota of infants with cystic fibrosis. Statistical methods included regression analyses with a multivariable multilevel linear model with random effects to correct for clustering on the individual level. FINDINGS: We analysed 461 nasal swabs taken from the infants with cystic fibrosis; the cohort of healthy infants comprised 872 samples. The microbiota of infants with cystic fibrosis differed compositionally from that of healthy infants (p=0·001). This difference was also found in exclusively antibiotic-naive samples (p=0·001). The disordering was mainly, but not solely, due to an overall increase in the mean relative abundance of Staphylococcaceae in infants with cystic fibrosis compared with healthy infants (multivariable linear regression model stratified by age and adjusted for season; second month: coefficient 16·2 [95% CI 0·6-31·9]; p=0·04; third month: 17·9 [3·3-32·5]; p=0·02; fourth month: 21·1 [7·8-34·3]; p=0·002). Oligotyping analysis enabled differentiation between Staphylococcus aureus and coagulase-negative Staphylococci. Whereas the analysis showed a decrease in S aureus at and after antibiotic treatment, coagulase-negative Staphylococci increased. INTERPRETATION: Our study describes compositional differences in the microbiota of infants with cystic fibrosis compared with healthy controls, and disordering of the microbiota on antibiotic administration. Besides S aureus, coagulase-negative Staphylococci also contributed to the disordering identified in these infants. These findings are clinically important in view of the crucial role that bacterial pathogens have in the disease progression of cystic fibrosis in early life. Our findings could be used to inform future studies of the effect of antibiotic treatment on the microbiota in infants with cystic fibrosis, and could assist in the prevention of early disease progression in infants with this disorder. FUNDING: Swiss National Science Foundation, Fondation Botnar, the Swiss Society for Cystic Fibrosis, and the Swiss Lung Association Bern.


Subject(s)
Cystic Fibrosis/microbiology , Microbiota , Nasal Cavity/microbiology , Anti-Bacterial Agents/therapeutic use , Case-Control Studies , Female , Humans , Infant , Infant, Newborn , Linear Models , Longitudinal Studies , Male , Prospective Studies , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Staphylococcus/drug effects , Staphylococcus aureus/drug effects
8.
J Allergy Clin Immunol ; 135(4): 905-912.e11, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25636948

ABSTRACT

BACKGROUND: Understanding the composition and dynamics of the upper respiratory tract microbiota in healthy infants is a prerequisite to investigate the role of the microbiota in patients with respiratory diseases. This is especially true in early life, when the immune system is in development. OBJECTIVE: We sought to describe the dynamics of the upper respiratory tract microbiota in healthy infants within the first year of life. METHODS: After exclusion of low-quality samples, microbiota characterization was performed by using 16S rDNA pyrosequencing of 872 nasal swabs collected biweekly from 47 unselected infants. RESULTS: Bacterial density increased and diversity decreased within the first year of life (R(2) = 0.95 and 0.73, respectively). A distinct profile for the first 3 months of life was found with increased relative abundances of Staphlyococcaceae and Corynebacteriaceae (exponential decay: R(2) = 0.94 and 0.96, respectively). In addition, relative bacterial abundance and composition differed significantly from summer to winter months. The individual composition of the microbiota changed with increasing time intervals between samples and was best modeled by an exponential function (R(2) = 0.97). Within-subject dissimilarity in a 2-week time interval was consistently lower than that between subjects, indicating a personalized microbiota. CONCLUSION: This study reveals age and seasonality as major factors driving the composition of the nasal microbiota within the first year of life. A subject's microbiota is personalized but dynamic throughout the first year. These data are indispensable to interpretation of cross-sectional studies and investigation of the role of the microbiota in both healthy subjects and patients with respiratory diseases. They might also serve as a baseline for future intervention studies.


Subject(s)
Microbiota , Nose/microbiology , Bacteria/classification , Bacteria/genetics , Bacterial Load , Biodiversity , DNA, Bacterial , Female , Humans , Infant , Infant, Newborn , Male , Metagenome , Prospective Studies , RNA, Ribosomal, 16S/genetics , Seasons
9.
Antimicrob Agents Chemother ; 58(7): 3934-41, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24777105

ABSTRACT

Heteroresistance to penicillin in Streptococcus pneumoniae is the ability of subpopulations to grow at a higher antibiotic concentration than expected from the MIC. This may render conventional resistance testing unreliable and lead to therapeutic failure. We investigated the role of the primary ß-lactam resistance determinants, penicillin-binding protein 2b (PBP2b) and PBP2x, and the secondary resistance determinant PBP1a in heteroresistance to penicillin. Transformants containing PBP genes from the heteroresistant strain Spain(23F) 2349 in the nonheteroresistant strain R6 background were tested for heteroresistance by population analysis profiling (PAP). We found that pbp2x, but not pbp2b or pbp1a alone, conferred heteroresistance to R6. However, a change of pbp2x expression was not observed, and therefore, expression does not correlate with an increased proportion of resistant subpopulations. In addition, the influence of the CiaRH system, mediating PBP-independent ß-lactam resistance, was assessed by PAP on ciaR disruption mutants but revealed no heteroresistant phenotype. We also showed that the highly resistant subpopulations (HOM*) of transformants containing low-affinity pbp2x undergo an increase in resistance upon selection on penicillin plates that partially reverts after passaging on selection-free medium. Shotgun proteomic analysis showed an upregulation of phosphate ABC transporter subunit proteins encoded by pstS, phoU, pstB, and pstC in these highly resistant subpopulations. In conclusion, the presence of low-affinity pbp2x enables certain pneumococcal colonies to survive in the presence of ß-lactams. Upregulation of phosphate ABC transporter genes may represent a reversible adaptation to antibiotic stress.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Penicillin Resistance/genetics , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Humans , Microbial Sensitivity Tests , Pneumococcal Infections/microbiology , Proteomics/methods , Real-Time Polymerase Chain Reaction , Streptococcus pneumoniae/growth & development , Transformation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...