Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 381(2261): 20220204, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37807684

ABSTRACT

As part of the CarbonWatch-NZ research programme, air samples were collected at 28 sites around Auckland, New Zealand, to determine the atmospheric ratio (RCO) of excess (local enhancement over background) carbon monoxide to fossil CO2 (CO2ff). Sites were categorized into seven types (background, forest, industrial, suburban, urban, downwind and motorway) to observe RCO around Auckland. Motorway flasks observed RCO of 14 ± 1 ppb ppm-1 and were used to evaluate traffic RCO. The similarity between suburban (14 ± 1 ppb ppm-1) and traffic RCO suggests that traffic dominates suburban CO2ff emissions during daytime hours, the period of flask collection. The lower urban RCO (11 ± 1 ppb ppm-1) suggests that urban CO2ff emissions are comprised of more than just traffic, with contributions from residential, commercial and industrial sources, all with a lower RCO than traffic. Finally, the downwind sites were believed to best represent RCO for Auckland City overall (11 ± 1 ppb ppm-1). We demonstrate that the initial discrepancy between the downwind RCO and Auckland's estimated daytime inventory RCO (15 ppb ppm-1) can be attributed to an overestimation in inventory traffic CO emissions. After revision based on our observed motorway RCO, the revised inventory RCO (12 ppb ppm-1) is consistent with our observations. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

2.
Glob Chang Biol ; 26(4): 2390-2402, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32017317

ABSTRACT

Several lines of evidence point to an increase in the activity of the terrestrial biosphere over recent decades, impacting the global net land carbon sink (NLS) and its control on the growth of atmospheric carbon dioxide (ca ). Global terrestrial gross primary production (GPP)-the rate of carbon fixation by photosynthesis-is estimated to have risen by (31 ± 5)% since 1900, but the relative contributions of different putative drivers to this increase are not well known. Here we identify the rising atmospheric CO2 concentration as the dominant driver. We reconcile leaf-level and global atmospheric constraints on trends in modeled biospheric activity to reveal a global CO2 fertilization effect on photosynthesis of 30% since 1900, or 47% for a doubling of ca above the pre-industrial level. Our historic value is nearly twice as high as current estimates (17 ± 4)% that do not use the full range of available constraints. Consequently, under a future low-emission scenario, we project a land carbon sink (174 PgC, 2006-2099) that is 57 PgC larger than if a lower CO2 fertilization effect comparable with current estimates is assumed. These findings suggest a larger beneficial role of the land carbon sink in modulating future excess anthropogenic CO2 consistent with the target of the Paris Agreement to stay below 2°C warming, and underscore the importance of preserving terrestrial carbon sinks.

3.
Science ; 352(6281): 80-4, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26966190

ABSTRACT

Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production.

SELECTION OF CITATIONS
SEARCH DETAIL